Low Temperature Methods
(1 K ~ 1 mK)

A. Abdelrahaman
Zumbühl Group
Department of Physics
University of Basel
• Physical properties He-3
 Artificial Production,
 Latent Heat of Evaporation and Vapour Pressure.

• He-3 and He-4 Mixtures
 Physical Properties,
 The Cooling Power,
 He-3 and He-4 Mixtures as Fermi Liquid,
 Finite Solubility of He3 in He4.

• Thermal Conductivity
 The lattice conductivity,
 Electronic Thermal Conductivity,
 Thermal and Electrical Conductivity: The Wiedeman-Franz Law,
 Influence of Impurities on Conductivity.

• Dilution Refrigerator

• Reference:
 Matter and Methods at Low Temperatures, 2edE, F.Pobell
4He Phase Diagram

![Phase Diagram](image)

- Solid 4He
- Superfluid 4He
- Normal liquid 4He
- Melting curve
- λ-line
- Evaporation
- Vapour

Temperature T [K] vs. Pressure P [bar]
• **Production of He-3**
• Tritium Decay.
• D-D Fusion Reaction.
• The p+Li6 Reaction for Breeding He-3.

3He Phase Diagram
Cooling Power of evaporative cooling

\[\frac{dP}{dT} = \frac{S_{gas} - S_{liq}}{V_{gas} - V_{liq}} \sim \frac{L}{TV_{gas}} = \frac{LP}{RT^2} \] (1)

assuming \(V_{gas} \gg V_{liq} \) and using \(L \sim T\Delta S \)

latent heat \(L \sim \) independent of temperature

then from (1) it follows:

\[\frac{dP}{P} \sim \frac{L}{R} \frac{dT}{T^2} \] (2)

with simple solution

\[P \propto \exp\left(-\frac{L}{RT}\right) \] (3)

i.e. cooling power is proportional to vapor press.

which is \textit{exponentially small with temperature}
Cooling Power proportional to Vapour Pressure

\[P \propto \exp \left(-\frac{L}{RT} \right) \]

pumping on \(^4\text{He}: \sim 1 \text{ K}

pumping on \(^3\text{He}: \sim 0.25 \text{ K}\)
3He refrigerator
Cooling Power proportional to Vapour Pressure

\[P \propto \exp\left(-\frac{L}{RT}\right) \]

How cool below 0.2 K?
How can exponentially small vapor pressure be overcome?

pumping on \(^4\text{He}\): ~ 1 K
pumping on \(^3\text{He}\): ~ 0.25 K

Fig. 2.7. Vapour pressures of liquid \(^3\text{He}\) and liquid \(^4\text{He}\)
He3-He4 mixture

the working fluid mixture of the dilution refrigerator:
Phase separation into ^3He rich and ^3He poor phase below $T \sim 800 \text{ mK}$
He-3 and He-4 Mixtures

- **The Cooling Power:**
 - The cooling capacity is the heat mixing of the two isotopes. The cooling power of an evaporating cryogenic liquid:
 \[Q = n \Delta H = n L \]
 - Make use of the latent heat \(L \) of evaporation, pumping with a pump of constant volume rate \(V \) on He3 and He4 bath with vapour pressure \(P \):
 \[\dot{Q} = V P(T) L(T) \]
 - He3-He4 dilution refrigeration: Use the difference of the specific heats of the two phases (the enthalpy of mixing):
 \[\Delta H \propto \int \Delta C dT \]
 \[\Rightarrow \dot{Q} \propto x \Delta H \propto T^2 \]

dilution refrigerator:
cooling power: \(~ T^2\)
• **He3-He4 Dilution Refrigerator:**
 - Dilution refrigerator can be understood if we compare the cooling process with cooling which occurs when liquid is evaporated.
 - In evaporation we rely on the classical heat of evaporation for cooling.
 - In dilution refrigeration we rely on the enthalpy of mixing of two quantum liquid: the different zero-point motions of the two helium isotopes and the different statistics.
• **He-3 and He-4 Mixtures as Fermi Liquid**
 • He4: Nuclear spin=0, Bose static, At low T Bose liquid undergo Bose condensation in momentum space (correspond to transition to superliquid for He4).
 • At T<0.5 K He4 condensed into quantum mechanical ground state, no excitation (phonon).
 • In mixture: He4 acts as inert superfluid background contributes to the volume and to the dissolved isotope He3.
 • He3: Nuclear spin ½ is a Fermi particle, Fermi static and Pauli priniciple.
 • In analogy to conduction elelctrons, the specific heat of liquid He3 behaves as:

\[
C_3 = \left[\frac{\pi^2}{2} \right] \frac{T}{T_F} R \rightarrow at \rightarrow T \ll T_F
\]

Fermi degenerate:

or

\[
C_3 = \left[\frac{5}{2} \right] R \rightarrow at \rightarrow T \gg T_F \rightarrow P = \text{cons} \ \tan t
\]

Classical:

• Behaviour is classical-gas-like at: \(T \gtrsim 1K \)
 • Behaviour is Fermi-gas-like at: \(T \ll 0.1K \)
 • He3-He4 mixture can be described by the law of an interacting Fermi gas
• **Finite Solubility of He3 in He4**

- **He3 in Pure He3:** The chemical potential of pure liquid He3 is given by the latent heat of evaporation, corresponding to the binding energy.

- **One He3 Atome in Liquid He4:**
 Identical chemical structure of the He isotopes-van der Walls force. The liquid phase He4 atoms occupy a smaller volume than He3 atoms. Its binding energy – due to the smaller distance or larger density - is stronger if it is in He4 than it would be in He3.

- **Many He3 Atoms in Liquid He4:** Attractive interaction between the He3 atoms and in liquid He4, due to:
 ~ Magnetic interaction due to the nuclear magnetic moments of He3 as in pure He3
 ~ Density effect

- **Pauli principle:** The energy states up to the Fermi energy are filled with two He3 atoms of opposite nuclear spin.

\[
E_F = K_B T_F
\]

- **Result:** The binding energy of the He3 atoms has to decrease, due to their Fermi character, if their number is increased.
Thermal Conductivity - Introduction

- Introduction:
- Thermal conductivity is a transport property of matter.
- Transport theory gives the thermal conductivity:
 \[\kappa = \frac{1}{3} \frac{C}{C_m} v \lambda \]
- \(\lambda \) - the mean free path, \(v \) - the velocity.
- The electrons involved in thermal transport can only be electrons with energy near the Fermi energy, and perform transition to higher non-occupied states, with Fermi velocity:
 \[v_F = \frac{\hbar}{m_e} \left(\frac{3\pi^2 N_o}{V_m} \right)^{1/3} \]
- At low temperature \(T \), Fermi velocity is independent of \(T \), and the transport properties depend on the mean free path \(\lambda \), determined by the scattering process of the heat carriers.
- The main limiting scattering processes for thermal conductivity: phonon-phonon, electron-phonon, electron-impurity.
- **The lattice conductivity** : phonons
 \[k_{ph} = \frac{1}{3} \left(\frac{C_{ph}}{V_m} \right) V_s \lambda_{ph} \propto T^3 \lambda_{ph} (T), \]

- At intermediate T: Thermal conductivity decrease with increasing T.
- At low T: Small number of thermally excited phonons, heat carrier scattered by crystal defects or boundaries only, the wave length is larger than the size of the lattice imperfections:
 \[k_{ph} = C_{ph} \propto T^3 \]
- Result: Thermal conductivity due to phonon transport goes through maximum.
- **Electronic Thermal Conductivity**: In metal, it is larger than the lattice thermal conductivity, the Fermi velocity of the conduction electrons is larger than the sound velocity of the photons.

\[
k_e = \frac{1}{3} \left(\frac{C_e}{V_m} \right) v_F \lambda_e \propto T \lambda_e(T),
\]

- High T: The number of thermally excited phonons increase with T, the electronic thermal conductivity in the electron-phonon scattering region decreases with increasing T.
- Low T: The scattering of electrons from defects and impurities dominates, small number of phonons:

\[
k_e \propto C_e \propto T
\]

- Result: The electronic contribution to the thermal conductivity goes through a maximum.
- The value and the position of this maximum strongly depend on the perfection of the metal.
- In disordered alloy the scattering of electrons by the varying potential can become so strong that electronic and lattice conductivities become comparable.
Thermal and Electrical Conductivity: The Wiedeman-Franz Law

- Metal at low T: in the defect scattering limit, λ -the mean free path is constant
- Electrical conductivity: the electrons conduct charge, temperature independent.
- In other words: in the defect scattering limit or the residual resistivity range, the electrical conductivity is T independent.
- Thermal conductivity: proportional to temperature in the RR range since the electrons carry specific heat.
- Result: The ratio of the thermal conductivity to electrical conductivity is proportional to the temperature

$$\frac{k}{\sigma} = L_o T \Rightarrow k = \sigma L_o T \Leftrightarrow L_o = 3\left(\frac{\pi K_B}{9e}\right)^2 \equiv \text{Lorenz}$$
• **Wiedeman-Franz Law**: For the temperature range where the conductivity due to electron transport is limited by large-angle elastic electron-phonon scattering, the same result:

• **Residual Resisitivity Ratio RRR**: A measure of the electrical conductivity at low temperature (boiling point of liquid helium), to the electrical conductivity at room temperature:

• RRR is direct measure of the limiting defect scattering

\[
RRR = \frac{\sigma_{4.2\,K}}{\sigma_{300\,K}} = \frac{\rho_{300\,K}}{\rho_{4.2\,K}}
\]
• **Influence of Impurities on Conductivity:**
• Magnetic and non magnetic impurities.
• 1-Electron scattering by non-magnetic impurity atoms: The increase of the electrical resistance is not very large, and for small impurities concentrations is given by Linde rule:

\[\Delta \rho_{nm} = a + b(\Delta Z)^2 \]

• 2-Scattering of electrons by magnetic impurities atoms: magnetic or spin-flip scattering of the conduction electrons can occur at localized moments of magnetic impurities, the increase of the resistance can be much larger.
• The strength of the scattering and the resulting resistance increase depend strongly on the properties of the magnetic impurity.
Thermal Conductivity

- The strength of scattering can depend very strongly on T due to **Kondo effect**: an enhanced inelastic scattering of a cloud of conduction electrons around magnetic moment that are localized on impurity atoms:

$$\rho = \rho_0 + \rho_k \ln(T)$$