Overview

The course was divided into:
- Semiconductor e-Detector
- Characteristics
 - Conductance type $n \leftrightarrow p$
 - Temperature dependence of resistance
 - Hall measurement
 - Specific resistance
 - Lifetime of charge carriers
- Dry Etching
- MOSFET-Fabrication
 - Basics of MOSFETs
 - Fabrication
 - Result
Conductance type $n \leftrightarrow p$

- Heat gradient
- Different chemical potential
- Charge carriers diffuse

Type-dependent polarity:
- Hot tip positive: n-type
- Hot tip negative: p-type
Temperature-dependent Resistance

- **Basically:** \(\rho = \rho(T), \ \mu = \mu(T), \ \sigma = e\rho\mu \)

- **Undoped Si:**
 - \(T=0 \): no charge carriers, \(\sigma = 0 \)
 - \(T>0 \), e jump to valence band, \(\sigma \uparrow \)
 - \(T>>0 \), lattice oscillations, \(\sigma \downarrow \)

- **Doped Si:**
 - \(T\approx0...150K \): no intrinsic cc, no ionized dopants
 - \(T \approx 150K...450K \): all dopants ionized, no intrinsic cc
 - \(T>450K \): intrinsic cc exceed dopants

- **Measurement:** flow cryostat
Specific Resistance

- Metal-SC-contact:
 Schottky barrier = nonohmic/nonlinear

- 4-tip-method:
 - branded current
 - Measure voltage drop
 - consider particular geometry
Life Time of CC

- Formation of CC through energy (thermal, light, ...)
- Recombination after life time τ
 - Expose Si to light
 - CC propagate
 - Switch off light
 - CC recombine
 - σ decays exponentially
 - Problem: finite rise/decay time of light exposition

$\tau = \frac{t_{1/2}}{\ln 2}$

\rightarrow Source of Noise
Dry Etching I

Etching rate in dependence of $c(O_2)$

- CF_4: 30sccm
- $P_{rf}=100W$
- $t=10min$
- $p=100mtorr$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C(O_2)$</td>
<td>0%</td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>d/nm</td>
<td>376</td>
<td>2411</td>
<td>836</td>
</tr>
</tbody>
</table>
Dry Etching II

Etching rate and side characteristics in dependence of p

- CF₄: 30sccm t=10min
- O₂: 8sccm P₀rf=100W

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>p/mTorr</td>
<td>20</td>
<td>100</td>
<td>130</td>
</tr>
<tr>
<td>d/nm</td>
<td>177</td>
<td>922</td>
<td>1464</td>
</tr>
</tbody>
</table>
Dry Etching III

Etching rate and side characteristics in dependence of $c(\text{CHF}_3)$

- CF_4: 20 sccm
- O_2: 4 sccm
- $t=10\text{min}$
- $p=100\text{mtorr}$
- $P_{\text{rf}}=100\text{W}$

<table>
<thead>
<tr>
<th>$c(\text{CHF}_3)$</th>
<th>0%</th>
<th>25%</th>
<th>35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>d/nm</td>
<td>2317</td>
<td>426</td>
<td>353</td>
</tr>
</tbody>
</table>
Dry Etching IV

Goal: trench 1μm, vertical edges

- CF_4: 60% $t=10\text{min}$ $p=100\text{mtorr}$
- O_2: 8% CHF_3: 32% $P_{\text{rf}}=100\text{W}$

→ see thermographic print out
MOSFET
Metal Oxide Silicon Field Effect Transistor

Basics
nnpn-type
Start with pre-p-doped (Boron) Si-wafer, preliminary SiO₂-Layer, thermal grown, 250nm, 1150°C, dry O₂

2. Spinning cycle:
 - Dehydration: hotplate, 5min, 180°
 - Spinning resist ma-P 215S: 5s at 2000rpm + 40s at 4000rpm
 - Prebake: evaporate solvant, 3min, 90°C

3. Light exposition 25s

4. Developping: maD-371: s40s slow turning, flush with H₂O, blow with N₂

5. Edging alignment markers: buffered HF, 3:15min, hydrophilic (SiO₂)→hydrophobic (Si)

6. Cleaning cycle:
 - Acetone
 - Flushing
 - Blowing

7. Edging markers in Si: 10% KOH, 70°C, 20min, stopped by flushing

8. Spinning cycle
MOSFET

Metal Oxide Silicon Field Effect Transistor

9. Expose for source and drain
10. Developping
11. Hardbake: 120°C, 3min
12. Edging source and drain areas in SiO₂, see 5.
13. Remove remaining resist, cleaning cycle
14. Diffusion: PDS phosphorus wafer, 30min, 93°C, N₂ atmosphere
15. Remove damaged oxide: buffered HF again
16. Oxidation (thin layer): 850°C, 30min
17. Spinning cycle
18. Expose for source and drain contact areas (SDCA)
19. Developping
20. Uncover SDCA: buffered HF, 48s
MOSFET
Metal Oxide Silicon Field Effect Transistor

21. Spinning cycle
22. Expose for contacts
23. Evaporation
 i. 10nm Titanium
 ii. 40n Silver
24. Lift-Off

→Measure characteristic curves!
MOSFET
Metal Oxide Silicon Field Effect Transistor

What they **should** look like:
MOSFET
Metal Oxide Silicon Field Effect Transistor

What they **do** look like: