Hole Spin Qubit in Ge Hut Wire

TAM talk - Florian Froning – 24.05.2018

Ge Hole Spin Qubit

Hannes Watzinger1, Josip Kukucka1, Lada Vukusic1, Fei Gao2, Ting Wang2, Friedrich Schäffler3, Jian-Jun Zhang2, and Georgios Katsaros1

1Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
2National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Johannes Kepler University, Institute of Semiconductor and Solid State Physics, Altenbergerstr. 69, 4040 Linz, Austria

arXiv:1802.00395
11.04.2018

Watzinger et al., Nano Lett. 16, 6879 (2016)
Motivation

- electrically controlled and scalable qubits
- intrinsically strong (and tunable) spin-orbit interaction of holes
 - especially in Germanium/Silicon nanowires
- long spin lifetime and dephasing time (reduced contact hyperfine interaction)
 - due to large HH-LH splitting even longer than in cylindrical nanowires

- study on nature of heavy-hole states in Ge hut wires\(^2\)
- study on spin states in quantum dots in Ge hut wires\(^3\)

\(^2\) Watzinger et al., Nano Lett. 16, 6879 (2016)
\(^3\) Li et al., APL 110, 133105 (2017)
• Stranski-Krastanow growth of Ge on Si buffer layer
 • 3-5 nm thick cap of Si to prevent oxidation
• length 1 μm, triangular cross section
• only [100] and [010] crystal direction

Fig: schematic band structure of the hut wire

Fig: Theory

Fig: STEM and AFM images

References:
[1] Zhang et al., PRL 109, 085502 (2012)
[3] Li et al., APL 110, 133105 (2017)
EDSR spectroscopy

- resonance condition
 $$f_{\text{drive}} = f_{\text{Larmor}} = g\mu_B B/h$$
- strong g-factor anisotropy

Fig: (a) Bias triangles show Pauli spin blockade
(b) Zero detuning current as function of drive frequency and magnetic field\(^\text{[1]}\)

Fig: g-factor anisotropy\(^\text{[1]}\).
\(\phi\): angle between [100] and B-field

Coherent Rabi Oscillations

- initialize in triplet state
- apply microwave burst of duration τ_{burst} in Coulomb blockade
- spin readout in spin blockade region
- Rabi frequency up to 140 MHz

Fig: Rabi oscillations (B = 127 mT, $f_{\text{drive}} = 5.96555$ GHz)$^{[1]}$

Ramsey

- apply two $\frac{\pi}{2}$ pulses with delay τ_{wait}
- average $T_2^* \approx 130$ ns

Fig: Ramsey fringes ($P_{RF} = 11$ dBm, $B = 127$ mT, $f_{\text{drive}} = 5.96555$ GHz)\[1\]

Single Shot Readout

- three stage pulsing sequence for spin to charge conversion
- fidelities:
 - spin-down: 0.832 ± 0.005
 - spin-up: 0.923 ± 0.008
 - charge readout: 93 %
- probably limited by T_1
 - $88 ± 5\mu s$ at 500 mT
 - $32 ± 2\mu s$ at 1100 mT

Coupling to Superconducting Resonator

- $\frac{\lambda}{2}$ alumina resonator
 - 5.972 GHz
 - quality factor 810
 - $\frac{\kappa}{2\pi}$ = 7.37 MHz
- $\frac{\gamma}{2\pi}$ = 6 MHz
- hole resonator coupling $\frac{g_c}{2\pi}$ = 148 MHz
- spin-resonator coupling $\frac{g_s}{2\pi}$ = 2-4 MHz

[1] Li et al., Nano Lett. 18, 2091 (2018)
Summary and Outlook

• Ge hut wire: CMOS compatible platform, isotopic purification, strong SOI
• electric dipole spin resonance in double quantum dot
 • Rabi frequency 140 MHz
• Ramsey experiments: $T_2^* \approx 130$ ns

• Single shot readout
• coupling to microwave resonator

• strong spin-resonator coupling?
• long-range coupling and spin entanglement?
Pauli Spin Blockade

(a) Diagram showing levels $S(2,0)$, $S(1,1)$, $T(2,0)$, and $T(1,1)$.

(b) Contour plots for $V_{SD} = -2$ mV and $V_{SD} = 2$ mV.

(c) Graph showing current I as a function of energy ϵ for $V_{SD} = 2$ mV and $V_{SD} = -2$ mV.