Quantum Coherence Lab

Zumbühl Group


Introduction to Mesoscopic Physics and Quantum Dots (15466-01)

Fall semester 2007
Prof. Dr. Dominik Zumbühl,
Thursdays, 8-10am, NCCR room, 2nd floor, Dept. of Physics

organization of lecture
schedule and content
projects and presentations
last updated dec 4, 2007

previous semesters courses:
Spring 2006: Intro to Meso Physics and Quantum Dots (web page)
Winter 2006/7: Intro to Meso Physics and Quantum Dots (web page)

Organization of Lecture, HS 07

weekly lectures Thursdays, 8-10am, NCCR room, 2nd floor, Dept. of Physics.

syllabus 2D electron gas, quantum point contacts, quantum dots, conductance fluctuations, quantum phase coherence, Coulomb blockade, Kondo effect, few electron dots, spin blockade, spin relaxation, charge sensing, single spin measurement, spin manipulation and coherence, nuclear spins, electron spin resonance, spin qubits, quantum computation. syllabus pdf

for: 6. semester bachelor and masters students in nanoscience and physics. physics III lecture is a prerequisite

2 credit points this lecture is a two hours per week course, no problem sets, final presentation, pass/fail.

purpose of this lecture is to bring the audience up to date on current experimental research in the field of quantum transport through nanostructures, focusing mainly on quantum dots in GaAs, spin-quibts in coupled dots and quantum computation. The lecture will inevitably discuss some simple condensed matter theory but will mainly focus on experiments.

structure will be a combination of lectures on my part to intruduce the basics and subsequent presentations done by students towards the end of the semester on topics that can be chosen by students from a selection. There will be no problem sets, but moderate amounts of reading as preparation for lectures will be assigned. The class is pass/fail, and the evaluation will be based on the presentation given by each student taking the class for credit. Sit-ins/students auditing the class (not for credit) are welcome.

Lecture Schedule and Content, HS 2007

date lecture content
sep 19, wed, 9:15am preliminary meeting, flier pdf, syllabus pdf
sep 27, thur, 8:15am solid state physics background
crystals, bands, effective mass approximation, spin-orbit coupling, GaAs conduction and valence bands, density of states, occupation of bands, intrinsic carrier concentration, semiconductor doping
oct 4 semiconductor surfaces and interfaces
surface states, semiconductor-vacuum interface, band bending, Fermi level pinning, Schottky barrier and diode
lecture notes pdf
oct 11 no class!
oct 18 2D electron gases (GaAs)
properties of 2DEGs, scattering mechanisms in 2DEGs and bulk GaAs, screening in 2D and 3D, Friedel Oscillations, ohmic contacts to 2DEGs, lateral gating and nanoscale devices
lecture notes pdf

quantum point contacts
van Wees et al., PRL60, 848 (1988) pdf
van Wees et al., PRB38, 3625 (1988) pdf
oct 25 experimental techniques
sample fabrication, low temperature methods (chapter 4, Heinzel), properties of 3He and 4He and phase diagrams, cryostats, evaporative cooling, 4He and 3He fridges, 3He-4He mixtures, dilution refrigeration
lecture slides pdf
nov 1 concepts in mesoscopic physics
Drude conductivity, Einstein relation, mesoscopic time and length scales,
lecture notes chapter 3 pdf

Cronenwett et al., PRL88, 226805 (2002) pdf
nov 8 concepts in mesoscopic physics
classical Hall effect, (integer) quantum Hall effect, 1D subbands, quantum point contacts, 0.7 structure
lecture slides pdf
nov 15 quantum dots I: Introduction
types of quantum dots, open and closed dot regimes, Coulomb blockade and diamonds, quantum confinement energy, constant interaction model, ground state and excited state spectroscopy, sequential and cotunneling transport, Coulomb peak lineshapes
lecture notes pdf

Kouwenhoven et al., dot review article, pp 1-28 pdf
van Houten et al., CB review, NATO ASI, pp 1-15 pdf
Foxman et al., PRB47, 10020 (1993) pdf
Foxman et al., PRB50, 14193 (1994) pdf

quantum dots II: Open Dots
open dot regime, conductance fluctuations,
weak localization, phase coherence,
lecture notes pdf

A. Huibers, Ph. D. Thesis (1999) and
S. Cronenwett, Ph. D. Thesis (2001)
are available on the marcuslab webpage.

open dot regime
Huibers et al., PRL83, 5090 (1999) pdf
nov 22 quantum dots II: Open Dots (cont.)
random matrix theory, spin-orbit coupling in
semiconductors and quantum dots, weak antilocalization
lecture notes pdf

quantum dots III: Kondo Effect
Kondo effect (metals, quantum dots), Kondo screening cloud, zero bias peak, logarithmic temperature dependence, even-odd structure
lecture notes pdf

Kondo effect
Goldhaber-Gordon et al., Nature 391, 156 (1998) pdf
Cronenwett et al., Science 281, 540 (1998) pdf
nov 29 quantum dots IV: Few Electron Dots
lateral / vertical few electron structures, circular symmetry: shell filling, Fock-Darwin states, Singlet-Triplet states, Singlet Triplet ground state transition,
lecture notes pdf

Few Electron Dots
Tarucha et al., PRL77, 3613 (1996) pdf
Ciorga et al., PRB61, 16315 (2000) pdf
Kouwenhoven et al., Science 278, 1788 (1997) pdf
Kouwenhoven, Austing & Tarucha, RPP 64, 701 (2002) pdf

double quantum dots
double quantum dots, honey comb stability diagrams,
finite bias transport, anticrossings
lecture notes pdf
dec 6 presentations I
1. charge sensing, Simon Kemmerling
2. charge manipulation, Björn Niesen
3. singlet triplet states, Regis Müller
4. spin blockade, Christian Held
dec 12
wednesday, 8:15am
presentations II
5. spin relaxation I, Janne Hyötylä
6. spin relaxation II, Raphael Wagner
7. spin filtering, Raphael Gräter
dec 13 presentations III
9. fast spin readout, Gregor Fessler
10. nuclear spins, Jerome Wiss
11. spin manipulation, Bahram Ganjipour
13. dynamic nuclear spin polarization, Kasper Renggli
dec 20 presentations IV
8. single spin readout, Nikolas Minder
12. electron spin resonance, Adrian Renfer
14. EDSR, Sandro Erni

Projects and Presentations, HS07

Presentations should be no longer than about 20 to 25 minutes, plus 5 to 10 minutes for questions.
Goal of the presentation is to explain to your fellow classmates the topic you have chosen
as clearly and as concisely as possible while keeping a critical attitude towards the reported research.

Topics with more than one article:
choose one article for in-depth presentation, mention highlights of other paper(s).

topic refs presenter
1. charge sensing Field et al., PRL70, 1311 (1993) pdf
Elzerman et al., PRB67, 161308R (2003) pdf
DiCarlo et al., PRL92, 226801 (2004) pdf
Simon Kemmerling
2. charge manipulation Hayashi et al., PRL91, 226804 (2003) pdf
Petta et al., PRL93, 186802 (2004) pdf
Björn Niesen
3. singlet triplet states Kyriakidis et al., PRB66, 35320 (2002) pdf
Zumbuhl et al., PRL93, 256801 (2004) pdf
Regis Müller
4. spin blockade Ono et al., Science 297, 1313 (2002) pdf
Johnson et al., PRB72, 165308 (2005) pdf
Christian Held
5. spin relaxation I Fujisawa et al., Nature 419, 278 (2002) pdf
Hanson et al., PRL91, 196802 (2003) pdf
Janne Hyötylä
6. spin relaxation II Kroutvar et al., Nature 432, 81 (2004) pdf
Amasha et al., arXiv:0707.1656 (2007) pdf
Raphael Wagner
7. spin filtering Potok et al., PRL89, 266602 (2002) pdf
Folk et al., Science 299, 679 (2003) pdf
Hanson et al., PRB70, 241304R (2004) pdf
Raphael Grüter
8. single spin readout Elzerman et al., Nature 430, 431 (2004) pdf
Hanson et al., PRL94, 196802 (2005) pdf
Nikolas Minder
9. fast spin readout I. T. Vink et al., App. Phys. Lett. 91, 123512 (2007) pdf
M. Thalakulam et al., arXiv:0708.0861 pdf
D. Reilly et al., App. Phys. Lett. 91, 162101 (2007) pdf
Gregor Fessler
10. nuclear spins Johnson et al., Nature 435, 925 (2005) pdf
Koppens et al., Science 309, 134 (2005) pdf
Jerome Wiss
11. spin manipulation Petta et al., Science 309, 2180 (2005) pdf Bahram Ganjipour
12. electron spin resonance (ESR) Koppens et al., Nature 442, 766 (2006) pdf Adrian Renfer
13. dynamic nuclear polarization Petta et al., arXiv:0709.0920 pdf Kasper Renggli
14. elec. dipole spin res. (EDSR) Nowack et al., Science (Nov 1, 2007) pdf
Laird et al, arXiv:0707.0557 pdf
Sandro Erni


Mesoscopic Electronics in Solid State Nanostructures”, Thomas Heinzel, Wiley-VCH (2003)
 “Electronic Transport in Mesoscopic Systems”, Supriyo Datta, Cambridge Universy Press (1995)
 “The Physics of Low-Dimensional Semicond.”, John H. Davies, Cambridge University Press (1998)

review articles
Quantum Transport in Semiconductor Nanostructures”, C. W. J. Beenakker and H. van Houten, published in Solid State Physics, 44, 1-228 (1991) (out of print, available at arXive:cond-mat/0412664) pdf

Electron Transport in Quantum Dots”, L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt and N. Wingreen, NATO ASI conference proceedings, edited by L. L. Sohn, L. P. Kouwenhoven and G. Schön (Kluwer, Dordrecht, 1997). pdf

Coulomb Blockade Oscillations in Semiconductor Nanostructures”, H. van Houten, C. W. J. Beenakker and A. A. M. Staring, published in Single Charge Tunneling, edited by H. Grabert and M. H. Devoret,  NATO ASI series B294 (Plenum, New York, 1992), (out of print, available at arXive:cond-mat/0508454). pdf

Few-Electron Quantum Dots”, L. P. Kouwenhoven, D. G. Austing and S. Tarucha, Rep. Prog. Phys. 64, 701 (2001). pdf

Recipes for Spin Based Quantum Computing”, V. Cerletti, W. A. Coish, O. Gywat and D. Loss, Nanotechnology 16, R27 (2005). pdf