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S1. EXPERIMENTAL SETUP

In this Supplementary section, the measurement setup as well as the pulse scheme are ex-

plained in more detail. A schematic of the circuitry to operate and measure the qubits is shown in

Fig. S1a. All experiments were performed by measuring hole transport through a double quantum

dot (DQD). Pauli spin blockade (PSB) is used for spin-to-charge conversion in order to read out

the final qubit state. The qubit operation and readout scheme is illustrated in Fig. S1b.

A BasPI LNHR 927 DAC was used to apply DC voltages to the gate electrodes of the device

to form a DQD. The same absolute voltage but of opposite sign is applied to the input of two

BasPI LSK389A IV-converters connected to the source and drain contacts of the device. The

IV-converters transform the current through the device into voltage signals, which are subtracted

with a BasPI SP1002 for common-mode noise rejection to achieve a better signal-to-noise ratio.

A coaxial line with total nominal attenuation of 8 dB was connected to the sample via a bias-

tee on a home-made printed circuit board (PCB) to provide fast pulsing and microwave (MW)

signals. Square-wave signals to drive the system from Pauli spin blockade into Coulomb blockade

(see Fig. 1d) were generated with a Tektronix AWG5208 arbitrary waveform generator (AWG). A

phase- and amplitude-controlled MW signal was generated with a Keysight E8267D vector signal

generator (VSG). I and Q inputs were controlled with individual channels of the AWG. The square-

wave and MW signals were combined with a Mini-Circuits ZC2PD-5R264-S+ signal combiner. The

output of a Signal Recovery 7265 lock-in amplifier was connected to the pulse modulation (PM)

input of the VSG to chop the MW signal at a frequency of 89.17 Hz. The transport signal from

the sample was demodulated with the lock-in amplifier and digitised with a National Instruments

USB-6363 data acquisition device (DAQ).

In Fig. S1b we show the three stages of the pulse scheme which are used to initialise (I),

manipulate (M) and read out (R) the qubits. Note that the initialisation and readout stage are

nominally identical. The qubit is initialised in a situation where the (1,1) and (0,2) charge states

are only slightly detuned (see schematic (I) in Fig. S1b). If a spin-up hole tunnels into the left

dot, it can tunnel to the right dot and form a singlet with the spin-down hole of the right dot.

Subsequently, it leaves the system and thermalises with the right reservoir. However, if a spin-down

hole tunnels into the left dot, the transition into the singlet state is forbidden due to the Pauli

exclusion principle. In principle the hole could tunnel to the right dot and form a triplet state, but

in practice the hole lacks the energy to occupy an excited orbital state, a necessary step to form a

triplet. Therefore, the spin state blocks the hole from tunnelling. The probability that a spin-up

or spin-down hole tunnels into the system at the beginning of the cycle is equal.

After the initialisation stage, the left hole is in the spin ground state, denoted |↓⟩, as indicated by

the orange arrow on the Bloch sphere sketched in Fig. S1b. Here, we will discuss the manipulation

of the hole spin residing in the left quantum dot (left qubit), but the same discussion is valid for

the hole in the right dot since initialisation and readout are only sensitive to the possibility of the

two spins forming a singlet. For simplicity, we use a rotating wave description.
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Following initialisation, the system is pulsed into Coulomb blockade, such that the holes cannot

tunnel out of the dot during manipulation. During this manipulation stage, a MW signal is applied

to the left plunger gate (see Fig. 1b). If the frequency of the MW signal matches the magnetic-

field-induced spin splitting, the spin is rotated on the Bloch sphere due to electric dipole spin

resonance (EDSR). The spin rotates around the x-axis for a time tb during which the MW signal

is applied. This results in Rabi oscillations between |↓⟩ and |↑⟩ (purple data in Fig. S1b). Note

that the x-axis of the Bloch sphere is defined by the phase of the MW signal as soon as the first

pulse is applied. A rotation around the y-axis is achieved by changing the phase of the MW signal

by π/2.

After the manipulation stage, the qubit is read out in the same energy configuration as in the

initialisation stage: if the left and the right dots have opposite spin and can form a singlet, a hole

is allowed to tunnel out of the DQD. If the pulse sequence is repeated fast, these tunnelling events

result in a measurable current which is proportional to the probability of the left spin to be in

|↑⟩ after (M), assuming the right spin is in the |↓⟩ state. The maximum current expected upon

completely lifting PSB (πx-pulse) is Imax = eΓ where Γ is the repetition rate of the pulse cycle

and e the elementary charge. In our lock-in measurement scheme, we measure the difference in

current when MW are applied and the qubit is operated, and when the MW are not applied and

the qubit remains in PSB. This allows us to distinguish the current due to the pulse sequence from

background leakage current. In the example shown in Fig. S1b, Imax ∼ 200 fA was found. This

agrees very well with the expectation for a total pulse cycle of 800 ns (Γ = 1.25 MHz) used for this

measurement. This method only allows us to determine the statistical average of events and does

not allow for single-shot readout.

This transport-based readout requires a high repetition rate (∼1 MHz), such that our signal

can be distinguished from the noise. Therefore the duration of the manipulation stage is limited

and hence the number of gate operations in a randomised benchmarking experiment (see Fig. 3)

or decoupling pulses in a CPMG experiment (see Fig. 4) is limited. This limitation becomes more

severe as temperature increases, since the readout contrast degrades (see Supplementary Note S8).
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FIG. S1. Experimental setup and measurement scheme. a Schematic circuit of the measurement and

control electronics. b Pulse scheme for the left qubit: the DQD cartoon illustrates hole transport, while the

Bloch sphere visualises the state of the spin-1/2 qubit. (I) Due to PSB, the qubit is initialised in the ground

state which we here assume to be |↓⟩. (M) Rabi oscillations are driven between |↓⟩ and |↑⟩ states. The

Bloch spheres show the qubit state after different burst times tb. For tb = 15.2 ns, for example, the spin is

flipped, which corresponds to a πx-pulse. (R) The spin state is projected onto the z-axis in a spin-to-charge

conversion scheme. Transport through the reservoir via the right quantum dot is only possible if the final

state is |↑⟩. When this scheme is repeated fast enough, a current proportional to the |↑⟩ probability of the

left spin is measured.
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S2. QUANTUM DOT OCCUPANCIES

Our transport-based measurement scheme does not allow us to determine the exact hole occu-

pation number. In Fig. S2a the first observable pairs of bias triangles are shown. Even at a high

source-drain voltage of VSD = 100 mV no additional bias triangles appear (see Fig. S2c). PSB

is observed for the two pairs of bias triangles indicated by the blue and green dot for opposite

bias direction. We assign these triangles to (1,1) - (0,2)/(2,0) charge transitions. Here, (m,n)

denotes the effective number of holes in the DQD, while the absolute number of holes in the DQD

is (m + m0, n + n0).

We were able to form and operate qubits at both transitions and found similar operation speeds

as well as coherence times. In this work, we only discuss the qubits energised and measured at the

green transition.
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FIG. S2. Double dot charge occupation. Charge stability diagrams for VSD = 10 mV a, VSD = 50 mV

b and VSD = 100 mV c. No additional bias triangles become visible when increasing VSD from 10 mV to

100 mV. The line-cuts in d are taken along the indicated lines in c. The blue and green dot in a indicate

the transition showing spin blockade for opposite bias direction. The qubits discussed in the main text were

energised at the green transition.



6

S3. MICROWAVE POWER CALIBRATION

The attenuation of the MW signal from the MW signal generator to the qubit is a function

of frequency, caused by e.g. impedance mismatches and resonances due to the PCB or bonding

wires. Therefore, the MW power that arrives at the qubit has to be calibrated. Because the Rabi

frequency fRabi depends on the MW power (see Fig. 1i), this calibration is necessary to compare

the Rabi frequency at different Larmor frequencies.

To calibrate the MW power, the qubit’s response to a continuous wave excitation is measured.

In the limit of a large dot-reservoir tunnel coupling in comparison to the MW signal frequency

[1, 2], the (1, 1) − (0, 2) charge transition at the baseline of the bias-triangle (see inset of Fig. S3,

Fig. S7a and Fig. 1c) is broadened by the MW power due to photon-assisted tunnelling (PAT). The

broadening ∆ε is measured along the detuning axis and then converted into a voltage eAMW = ∆ε

which drops over the inter-dot tunnel barrier [3] (see Fig. S3). This broadening of the transition

depends on the MW signal that effectively arrives at the qubit. Therefore, the measured MW

amplitude AMW permits a calibration and thus a comparison of the Rabi frequency at different

Larmor frequencies for the same driving strength AMW (see Fig. 1i).

The calibrated voltage amplitude AMW allows us to estimate the electric field |EMW| at the

QDs, necessary in order to estimate the spin-orbit length lSO (see Supplementary Note S7).
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FIG. S3. Example of calibrating AMW. Due to a capacitive coupling to the QD, the zero-detuning line is

broadened upon applying a MW signal on the left plunger gate P1. This broadening 2∆ε (blue) allows AMW

to be calculated. AMW is the MW-induced voltage drop over the inter-dot tunnel barrier as eAMW = ∆ε.

A larger amplitude, here given as the power of the MW signal at the signal generator output, results in an

increase of the transition broadening ∆ε. The green data points are values of ∆ε extracted using a signal

threshold algorithm. The inset shows the bias triangle and the axis used to define the detuning ε (blue axis).



7

S4. RABI AND RAMSEY EXPERIMENTS AT DIFFERENT TEMPERATURES

In Fig. S4 we show Rabi and Ramsey measurements at T = 1.5, 3 and 4.2 K.
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FIG. S4. Coherent qubit control at different temperatures. Comparison of Rabi chevron patterns

and Ramsey fringes at a 1.5, b 3 and c 4.2 K for Q2. The FFTs show the quadratic dependence of fRabi

on the frequency detuning in the Rabi measurements and a linear dependence on the frequency detuning in

the Ramsey experiments.
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S5. FAST RABI OSCILLATIONS

Hole spin qubits allow for fast all-electrical spin rotations. In our experiments, we observed

Rabi frequencies as high as fRabi = 147 MHz for Q1.

150

100

50

0

t b
 (

ns
)

2520151050

MW signal power (dbm)

400

300

200

100

0

 I (fA
)

200

150

100

50

0

f R
ab

i (
M

H
z)

2520151050

MW signal power (dbm)

a b

FIG. S5. Fast Rabi oscillations a Rabi oscillations at T = 1.5 K and fL ∼ 8 GHz as a function of MW

signal power. b The Rabi frequency extracted by a FFT-analysis of the data in a shows the maximum

fRabi = 147 MHz at 25 dbm. fRabi follows a square-root dependence on the the MW signal power at the

VS output (red dashed line). The MW signal power is quadratically related to the calibrated MW voltage

AMW. Therefore, this dependence agrees very well with the linear dependence of fRabi on AMW in Fig. 1i.

The observed saturation at higher power could be an indication of an anharmonic confinement potential

[2, 4, 5].



9

S6. ESTIMATE OF EFFECTIVE DOT SIZES

In this section we estimate the effective dot size. We assign Q1/Q2 to the left/right QD, i.e.

Q1 is closer to the MW drive applied to the left plunger gate P1. This assignment is based on the

fact that Q1 has the higher Rabi frequency fRabi and larger g-factor tunability with the square

pulse amplitude Ap (see Fig. 1g).

The effective dot size can be estimated by ldot = ℏ/
√

(m∗∆), where m∗ denotes the effective

mass and ∆ the orbital energy. Assuming a weak exchange interaction, ∆ is given by the single-dot

singlet-triplet splitting ∆ST, such that ∆Q1 = 5.3 meV and ∆Q2 = 3.3 meV. Ref. [6] states values for

the effective mass for holes in silicon nanowires ranging from 0.184m0 to 0.794m0, depending on the

nanowire orientation. Since the exact shape and orientation of our hole wavefunction is unknown,

and also strain is neglected in Ref. [6], we assume an average effective mass of m∗ = 0.45m0 to

extract lQ1
dot ≈ 6 nm and lQ2

dot ≈ 7 nm. The estimated size of the QDs compare well with the plunger

gate length of ∼ 15 nm.
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S7. ESTIMATE OF SPIN-ORBIT LENGTH

The strength of the spin-orbit interaction can be characterised by the spin-orbit length lSO,

where πlSO/2 describes the distance a hole has to be displaced to induce a spin-orbit mediated

spin flip. We estimate lSO using the following equation for spin-orbit mediated EDSR [1, 7]:

lSO =
gµB

2hfRabi

(
2|Bext|

ℏ2

∆2m∗ e|EMW|
)
, (1)

where Bext denotes the external magnetic field, ∆ the orbital energy of the QD hosting the qubit,

|EMW| the electric field strength of the MW driving field, m∗ the effective mass of the charge

carrier and g is the Landé g-factor in the direction of Bext. Here, we assume that EDSR is driven

by a periodic displacement of the wave function as a whole without modulating the spin splitting

(sometimes referred to as iso-Zeeman EDSR [8]). We use an effective mass m∗ = 0.45m0 (see

Supplementary Note S6).

To estimate the electric field strength |EMW| at the location of the qubits, the MW amplitude

AMW extracted from PAT measurements is used (see Supplementary Note S3). AMW drops across

the inter-dot tunnel barrier, which we estimate by the distance between the two QDs ddd ∼
45− 60 nm (see Fig. 1b) [3]. Consequently, |EQ1

MW| = AMW/ddd is the electric field in Q1, the qubit

below gate P1. We assume that |EQ2
MW| is smaller than |EQ1

MW| by a factor of 4 (for ddd = 45 nm)

to 6 (for ddd = 60 nm) due to its larger distance to P1 (∼ 45 − 60 nm for Q2 in comparison to

∼ 10 nm for Q1).

In Fig. S6a,b we show lSO extracted for different MW signal amplitudes AMW for Q1 (red) and

Q2 (blue) using the data from Fig. 1i. From this data we estimate an average lSO ∼ 20 − 60 nm.

Using ESO = ℏ2/(2m∗l2SO), lSO can be converted into a spin-orbit energy ESO ∼ 30 − 150µeV

(see Fig. S6c,d) which is in good agreement with theoretical predictions for a Si nanowire with

rectangular cross section of diameter 4 − 10 nm (green box) [6].
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FIG. S6. Spin-orbit length. Estimated spin-orbit length lSO using the data from Fig. 1i for a Q1 (red)

and b Q2 (blue). A distance ddd = 45 nm (60 nm) and a ratio of EQ1
MW/EQ2

MW = 4 (6) was used for the data

depicted as diamonds (circles). c,d Spin-orbit energy ESO corresponding to lSO from a and b. The data is

in good agreement with the theoretical prediction (green box) [6].
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S8. TEMPERATURE DEPENDENCE OF PAULI SPIN BLOCKADE

In this section we discuss the temperature dependence of the Pauli spin blockade, which is

closely linked to the temperature dependence of our qubit readout. Spin blockade is revealed by

a suppression of current flow through the base of the bias triangles at Bext = 0 T, as shown in

Fig. S7a. A finite magnetic field Bext lifts PSB and a leakage current is observed (see Fig. S7b).

The presence of a zero-field dip is an indication that lifting of PSB is dominated by spin-orbit

interaction [9]. Note that the dip is offset from Bext = 0 T due to trapped flux in the magnet.

Fig. S7c shows line-cuts of the leakage current along Bext at ε = 0 for temperatures in the

range of 1.5 to 14 K. The dips, that can be observed up to ∼ 12 K, are well fitted by a Lorentzian

function [9]. To characterise the efficiency of PSB we plot the dip amplitude APSB as a function

of temperature T in Fig. S7d (left axis, purple data). We find that APSB shows a Gaussian decay

with T.

Since our qubit readout scheme relies on PSB, we compare the PSB efficiency with our

temperature-dependent qubit readout signal. In Fig. S7d the qubit readout current I(tb = tπ)

after applying a π-pulse is shown for temperatures from 1.5 to 6.5 K (right axis, yellow and red

data). I shows a stronger exponential decay with temperature than the Gaussian decay observed

for APSB, such that the qubit readout only works up to ∼6 K. When comparing the decay of APSB

and I, one has to take into account that EDSR experiments were performed at Bext > 50 mT.

Therefore, APSB and I might have a different sensitivity to T.

PSB is protected against temperature by the single dot singlet-triplet splitting ∆Q1 = 5.3 meV

and ∆Q2 = 3.3 meV. Spin-flip cotunnelling experiences a strong thermal smearing of 5.4 kBT [10],

such that the extracted orbital energies correspond to temperatures of 11 K and 7 K. This analysis

suggests that the suppression of PSB with increasing temperature is in good agreement with spin-

flip cotunnelling.
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FIG. S7. Spin blockade temperature dependence. a Pair of bias triangles with detuning axis (pink

arrow) at VSD = 12 mV. b Spin blockade leakage current as a function of magnetic field and detuning.

Close to zero magnetic field the current is strongly suppressed, indicating Pauli spin blockade. In presence

of spin-orbit interaction, spin blockade is lifted by applying a finite magnetic field. The dip offset from

Bext = 0 T is due to trapped flux in our magnet. c Line cuts along Bext at ε = 0 at T = 1.5 to 14 K. The spin

blockade efficiency decreases with increasing temperature, which is seen from the decay of the dip amplitude.

d T-dependence of PSB efficiency APSB extracted from Lorentzian fits from the cuts in c (left axis, purple

points). The data fit well to a Gaussian function APSB ∝ exp
(
−(T/TA)2

)
with width TA ≈ 6.9 ± 0.2 K.

The decay of the Rabi signals in both qubits (yellow/red symbols), on the other hand, shows a stronger

temperature dependence and fits well to I ∝ exp (−(T/TI)γ) with γ ≈ 4 ± 0.2 and TI ≈ 4.1 ± 0.1.
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S9. EDSR SPECTRAL LINEWIDTH

We confirm the T ∗
2 temperature dependence presented in Fig. 2d by measuring the EDSR

linewidth in a continuous-wave experiment. In this measurement, the qubit was pulsed into

Coulomb blockade and a continuous MW signal was applied to drive the spin. The power of the

MW signal was carefully chosen to avoid power-broadening. A set of data for Q2 at fL ∼ 8.8 GHz

is shown Fig. S8 for temperatures up to 6 K. A Gaussian function is fitted to the resonance to

determine the full width at half maximum ∆fFWHM. The coherence time T ∗
2 is related to ∆fFWHM

by [11, 12]

T ∗
2 =

2
√

ln 2

π · ∆fFWHM
. (2)

In Fig. S8b the extracted temperature dependence of T ∗
2 is presented. The results from this

continuous-wave experiment are in agreement with the pulsed experiments shown in Fig. 2b-d.
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2 temperature dependence extracted from EDSR linewidth measurements. a Response
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S10. LONGEST DEPHASING TIME T ∗
2

In Fig. S9 we show Ramsey fringes of Q2 with a decay time of T ∗
2 = 441 ± 34 ns.

0 100 200 300 400
τ (ns)

0.0

0.1

0.2

0.3

I (
pA

)
T ∗2 = 441± 34 ns

FIG. S9. Ramsey experiment demonstrating a long coherence time. A T ∗
2 = 441±34 ns was obtained

at fL = 5.85 GHz and T = 1.5 K for Q2. The data were taken on resonance with a τ -dependent phase ϕ(τ),

which adds an artificial oscillation [13]. The solid curve shows a fit to A + B sin(ωτ + θ) exp
[
−(τ/T ∗

2 )β+1
]

using β from Fig. 4c.
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S11. HYPERFINE LIMIT OF T ∗
2

In natural silicon there are 4.7% 29Si spin-carrying isotopes present which will lead to dephasing

of the qubit. In this section, we give an estimation of the dephasing time T ∗
2 limited by the finite

hyperfine interaction due to the presence of these nuclear spins in the Si host material.

The maximum Overhauser field A experienced by an electron (e) in natural silicon is Ae =

1.85 mT [14]. Here, A corresponds to the field if all nuclear spins are polarised. For holes, the

hyperfine interaction has been found to be about an order of magnitude weaker [15–18]. Thus, we

assume Ah ∼ 0.185 mT. The random Overhauser field fluctuations δAh are given by

δAh = Ah/
√

NS , (3)

where NS is the number of non-zero nuclear spins inside the wave function of the QD [19]. The

spin coherence time is then

T ∗
2 =

ℏ
√
NS

gµBAh
. (4)

where g is the hole spin g-factor, µB is the Bohr magneton and ℏ is the reduced Planck constant.

In order to estimate NS , we need to calculate the volume of the QD. We assume a cylindrical

hole wave function, elongated along the fin and with a diameter of d ∼ 5 nm. For the dimension

along the fin, we use the dimensions extracted from the singlet-triplet splitting: lQ1 = 5.7 nm and

lQ2 = 7.1 nm (see also Supplementary Note S7). For the density of silicon ∼ 50 atoms/nm3 and

4.7% spin carrying 29Si atoms, we find NS ∼ 280 (NS ∼ 350) in the left (right) QD.

Using the g-factors extracted from EDSR measurements (see Fig. 1f), we find T ∗
2 ∼ 520 ns for

Q1 and T ∗
2 ∼ 490 ns for Q2. The expected increase in coherence for holes in comparison to electron

spin qubits [12] due to a smaller Ah is counteracted by our much smaller silicon hole spin qubits

and thus a lower NS . However, while for electrons in Si the hyperfine interaction is isotropic, it is

anisotropic for holes. Therefore, we note that the estimated limit for T ∗
2 corresponds to the worst

case scenario in terms of magnetic field orientation [16].

Strikingly, these estimates match rather well with the longest T ∗
2 found in our experiments,

see Supplementary Note S10. This indicates that the residual nuclear spins of the host material

may play an important role in limiting the coherence also for hole spin qubits. Furthermore, we

estimate an increase to T ∗
2 ∼ 11µs (∼ 4µs) when the qubit is hosted in an isotropically purified

28Si layer with 100 ppm (800 ppm) residual nuclear spins. These coherence times are comparable to

the coherence of state-of-the-art electron spin qubits in isotopically enriched Si using micromagnets

[20], but the electron spin qubits still lack behind in operation speed in comparison to their hole

counterparts.
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S12. SPIN RELAXATION TIME T1

In Fig. S10 we present an attempt to measure T1 for Q2 at T = 4 K and fL = 7.7 GHz. The

longest waiting time that could be applied was 1µs. Guides to the eye show the expected decay

curves for T1 = 1, 3, 6 and 10µs. The data suggest a spin relaxation time T1 longer than 10µs.

Since T1 is much longer than our measurement cycles, spin relaxation has no influence on our

results. The observed relaxation rate is in good agreement with other experiments and theory

[21, 22].

I

I Rtwait

z

y
x

πx
T1

a b

FIG. S10. Spin relaxation. a Qubit manipulation scheme to measure spin relaxation: after initialisation

in the spin ground state |↓⟩, a πx pulse brings the qubit into the spin excited state |↑⟩. On a timescale

given by the spin relaxation time T1, the spin polarisation decays from |↑⟩ to |↓⟩. After a waiting time

twait, the residual polarisation P|↑⟩ is measured. This polarisation is expected to show an exponential decay

according to P|↑⟩ ∝ e−twait/T1 . b Orange data points shows the measurement results for Q2 at T = 4 K and

fL = 7.7 GHz. No T1-decay is observed for the maximum waiting time of twait = 1µs. Guides to the eye,

showing the decay curves for T1 = 1, 3, 6 and 10µs, indicate T1 > 10µs. The yellow shaded region shows the

two-sigma uncertainty of the measured data. A control measurement with a 2πx pulse (red data) instead of

the πx-gate shows that the current after a full 2π spin rotation becomes minimal as expected. The larger

noise on the red data is due to a shorter integration time.
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S13. COHERENCE-LIMITED QUALITY FACTOR

We show the dependence of the qubit quality on the MW signal power at 1.5 and 4.2 K. Because

of limits on the maximal pulsing time impose by our read-out method, we could not observe TRabi
2

in this experiment. Instead of the driven quality-factor Q = TRabi
2 · 2fRabi, we therefore investigate

a coherence-limited quality factor Q∗ which we define as

Q∗ = T ∗
2 · 2fRabi = T ∗

2 /tπ (5)

where tπ is the spin-flip time.

The data in Fig. S11 were taken for Q2 at fL = 8.8 GHz, the same configuration as discussed in

Fig. 2. As expected for a power-independent T ∗
2 , Q∗ shows a roughly linear dependence on AMW

(see Supplementary Note S3) due to a linear increase of fRabi on AMW (see Fig. 1i).

50

25

0

 Q
*

43210

AMW (mV)

 1.5 K
 4.2 K

FIG. S11. Coherence-limited quality factor Q∗ = T ∗
2 · 2fRabi as a function of power at 1.5 and 4.2 K.

These data were recorded on Q2 at fL = 8.8 GHz. The increase of Q∗ with driving amplitude AMW is due

to faster Rabi oscillations and thus a shorter spin-flip time tπ.
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S14. DYNAMICAL DECOUPLING

In this section, we compare the extended coherence time from dynamical decoupling of Q2 for

different numbers of decoupling pulses and temperatures. The measurements presented in Fig. S12

show the normalised difference ∆I of the readout current measured after a projection of the qubit

into |↑⟩ and |↓⟩. Ideally, if there is no free evolution of the qubit (τ = 0), ∆I(normalised) = 1

because the normalised current after projecting into |↓⟩ = 0 and |↑⟩ = 1. Due to decoherence, the

signal decays with increasing τ on a time scale given by the coherence time T ∗
2 (Ramsey), THahn

2

(Hahn-echo), or TCPMG
2 (CPMG), depending on the pulsing scheme applied. We investigate the

free induction decay (Ramsey), one decoupling pulse n = 1 (Hahn-echo) and n = 2, 4, 8, 16 and 32

decoupling pulses (CPMG-n). Schematics of the pulse sequences are shown at the top of Fig. S12.

Note that τ is defined as the free evolution time and thus equals the total time no gate is applied

to the qubit. The generally observed decrease of the readout signal with higher temperatures (see

Fig. S7) was partially compensated by using shorter pulse cycles (and thus shorter maximal τ).

As a consequence, the maximal τ differs for the different traces. In particular for the 4.2 K data,

the signal was only measurable for a comparably short maximal τ ∼ 1µs.

For the Ramsey and Hahn-echo experiment, the signal of the full rotation of the second πϕ/2

pulse was measured (from ϕ = 0 to 2π) [23]. The CPMG signal amplitude ∆I was obtained by

measuring the difference in current between ϕ = 0 and ϕ = π, which corresponds to projection

onto |↑⟩ and |↓⟩, respectively. These data are used to extract CPMG-n coherence times in Fig. 4a

and β in Fig. 4c for 1.5 and 3 K.
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 1.5 K  3 K  4.2 K

τ/2 τ/2
Hahn echo CPMG-n

 exp(-(τ/T2)β+1)

πx/2Ι πx πϕ/2 R πx/2Ι πy πϕ/2 R[ ]n

FIG. S12. Active noise decoupling. Decoupling of Q2 at fL = 8.8 GHz from low-frequency noise using

Hahn-echo and CPMG-n decoupling schemes for 1.5 K (blue), 3 K (orange) and 4.2 K (red). This data was

fitted to ∝ exp
(
− (τ/T2)

β+1
)

(dashed curves) as discussed in the main text. β was obtained by iteratively

fitting the decays to extract TCPMG-n
2 and fitting a power-law to the TCPMG-n

2 to extract β [24], as described

in Fig. 4a. The obtained CPMG coherence times are summarised in Fig. 4a and the extracted β in Fig. 4c

for 1.5 and 3 K. Due to low signal-to-noise which only allowed for a short τ ∼ 1µs, it was not possible to

reliably extract β from the data set at T = 4.2 K.
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[6] C. Kloeffel, M. J. Rančić, and D. Loss, Direct Rashba spin-orbit interaction in Si and Ge nanowires

with different growth directions, Physical Review B 97, 235422 (2018).

[7] V. N. Golovach, M. Borhani, and D. Loss, Electric-dipole-induced spin resonance in quantum dots,

Physical Review B 74, 165319 (2006).

[8] A. Crippa, R. Maurand, L. Bourdet, D. Kotekar-Patil, A. Amisse, X. Jehl, M. Sanquer, R. Laviéville,
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