
Supplemental Material
Isotropic and Anisotropic g-factor Corrections in GaAs Quantum Dots

Leon C. Camenzind,1, ∗ Simon Svab,1, ∗ Peter Stano,2, 3 Liuqi Yu,1, † Jeramy D.

Zimmerman,4, ‡ Arthur C. Gossard,4 Daniel Loss,1, 2 and Dominik M. Zumbühl1
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SUPPLEMENTAL SECTION 1: COMPARISON OF WAFER PROPERTIES IN THE TWO DEVICES

A schematic of the wafer profiles in our samples is shown in Fig. S1. The wafer of device 2 has a decreased mobility
and density of remote Si dopants compared to that of device 1. The following values for the mobility µ, the 2DEG
density n and the dopant density nδ were measured in the two wafers:

µ [ cm
2

V ·s ] n [cm−2] nδ [cm−2]

Device 1 (Gossard-060926C) 4 · 105 2.6 · 1011 6 · 1012

Device 2 (Gossard-060926B) 2.8 · 105 2.8 · 1011 4 · 1012
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FIG. S1. Schematic representation of the GaAs/Al0.3Ga0.7As heterostructures used in the experiment. 110 nm below the
surface, a two-dimensional electron gas (2DEG) is formed at the GaAs/Al0.3Ga0.7As interface. Silicon atoms in a δ-doping
layer serve as a remote doping, providing electrons to the 2DEG.
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SUPPLEMENTAL SECTION 2: INFLUENCE OF THE DOT SHAPE ON THE g-FACTOR
CORRECTIONS

By using the spectroscopy of quantum dot orbitals with in-plane magnetic fields (see Ref. [1]), the following values
for the orbital excitation energies Ex,y,z and corresponding confinement lengths lx,y,z were extracted in the two devices:

Ex [meV] Ey [meV] Ez [meV] lx [nm] ly [nm] lz [nm]

Device 1 1.9 2.6 28.6 24.5 20.9 6.3

Device 2 1.7 3 25.5 25.8 19.5 6.7

We find that the quantum dot in device 2 is closer to the condition Ey ≈ 2Ex than in device 1, indicating an
elongated quantum dot close to the quasi-one-dimensional limit. While this difference in the dot shape changes the
predicted behaviour of the quantum dot orbitals [2], its effect on the g-factor corrections in the theoretical framework
of Ref. [3] is negligible. The reason for this behaviour is that the g-factor corrections merely depend on the energy
Ez, which is given by the interface electric field of the heterostructure, rather than Ex and Ey. The weak effect of
the dot shape on the g-factor corrections is shown in Fig. S2, where the dependence of the predicted g-factor on the
in-plane magnetic field direction is shown for the dot shape in device 1 (red curve) and device 2 (blue curve). The
predicted g-factor differences for the two dot shapes are far smaller than what can be resolved in the experiment.

For the numeric results obtained from the model, we used a Dresselhaus constant γc = −10.6 eVÅ3. The het-
erostructure parameters with the resulting spin-orbit interactions are given and discussed in Ref. [2] and Ref. [3].
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FIG. S2. Theoretical predictions for the g-factor in dependence of the angle φ of the in-plane magnetic field for the dot shapes
found in device 1 (red) and device 2 (blue).
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SUPPLEMENTAL SECTION 3: TUNNEL RATE INTO THE SPIN STATES

Here, we discuss a qualitative model for Γ(∆E). This phenomenological model is used to explain Γ(∆E) as discussed
and shown in Fig. 2a of the main text. The spin degeneracy of the ground state is lifted in an external magnetic field,
such that the ground (|↑〉) and the excited spin state (|↓〉) become energetically separated by the Zeeman energy ∆.
When occupied states in the reservoir are aligned with empty levels of the quantum dot, an electron can elastically
tunnel into the empty quantum dot [4]. In this situation, the tunnel rate Γ is defined by a combination of three
factors: the density of electrons capable of tunneling into the quantum dot, the number of quantum dot levels into
which these electrons could tunnel and the details of the tunnel barrier. At zero temperature and when ignoring any
energy dependence of the tunnel barrier, Γ(∆E) rises to the ground state tunnel rate Γg when E0 is aligned with µ
at ∆E = 0 (see Fig. 2a of the main text). Upon increasing ∆E further, Γ(∆E) = Γg until tunneling into the spin
excited state becomes energetically allowed at ∆E = ∆ such that Γ(∆E) = Γg + Γe where Γe is the tunnel rate into
the spin excited state.

At a finite temperature, the states in the reservoir are occupied according to the Fermi-Dirac distribution
f(E, kBT ) = 1/ (exp (∆E/(kBT )) + 1) where kB is the Boltzmann constant and T is the temperature. This thermal
occupation factor, f(E, kBT ), is identified in the data close to zero detuning ∆E = 0 and at the Zeeman splitting
∆E = ∆, as a broadening of the resonance condition when µ is aligned with |↑〉 and |↓〉, respectively.

Further, the tunnel barrier potential leads to a suppression of Γ with increasing ∆E because the electrons have to
tunnel through a larger potential [4–7]. This energy dependence is reflected in the WKB expression for the tunnel
rate of a particle with energy E through a potential barrier of height V0. For small energies ∆E � V0, this expression
can be simplified to Γ(∆E) ∼ Γ0e

−β∆E (see Supplemental Section 4) where Γ0 and β depend on the details of the
tunnel barrier potential [4].

In summary, for small detunings ∆E, the tunnel rate can then be expressed as

Γ(∆E) = Γg(∆E) + Γe(∆E)

= Γ0e
−β∆E [f(∆E, kBT ) + χf(∆E + ∆, kBT )] , (S1)

where χ is an empirically introduced ratio between Γe and Γg [5]. An example is given in Fig. S3. From symmetry
arguments one would expect Γe = Γg: in a magnetic field, the ground state of the quantum dot and the conduction
band both split by the Zeeman energy ∆. As a consequence, the tunnel barrier for electrons of both spin species
should be equal (χ = 1). While not discussed in this article, in the experiment we often find spin dependent tunnel
rates such that χ < 1 [8, 9]. The cause of this asymmetry is not understood conclusively yet [6].

At some configurations of the magnetic field, fitting of our data to Eq. S1 was difficult due to suppressed tunneling
into the excited spin state and reservoir resonances. In such cases, the Zeeman splitting could be extracted by fitting
sigmoid functions to the thermally broadened spin transitions. Alternatively, for some of the data points in device 2 a
better fit could be obtained when using two separate factors β1 and β2 for the two spin states [4]. These fit procedures
result in very comparable Zeeman energies ∆ – the quantity in which we are interested in for this work.

1000

500

0

tu
nn

el
 ra

te
 Γ

 (H
z)

8006004002000

detuning ∆E (µeV)

Γg + Γe

Γg
χ

∆

FIG. S3. Data and model of the tunnel rate into the spin states of an empty quantum dot. This dataset was taken at 9 T.
Dashed curves shows the expected tunnel rate Γg into the spin ground state while the solid curve is a fit to the experimental
data of the total tunnel rate Γ = Γg + Γe. In the model curves, the exponential suppression of Γ due to energy dependent
tunnel potential ∼ exp (−β∆E) is recognized for larger ∆E. The spin dependent tunnelling factor χ (here χ ≈ 0.7) is visible
as the ratio of Γ and Γg at large detuning ∆E at which f(∆E, kBT ) = f(∆E + ∆, kBT ) = 1.
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SUPPLEMENTAL SECTION 4: SUPPRESSION OF THE TUNNEL RATE IN A MAGNETIC FIELD

In Ref. [2] we found a mass renormalization due to an in-plane magnetic field B‖ of

1

m∗
≈ 1

m∗(Φ = 0)

(
1

1 + Φ2

)
. (S2)

Here, Φ = e
h̄B‖λ

2
z is the flux due to B‖ through the 2DEG effective width λz squared. For simplicity, we only focus

on corrections due to the confinement along the growth direction.
For an electron tunneling through a rectangular potential barrier, the transmission coefficient is [10]

T (E) ∝ exp

(
−2 · d
h̄

√
2m∗ (U0 − µ+ ∆E)

)
, (S3)

where d is the width and U0 the height of the tunnel barrier (see Fig. S4a). For small energies ∆E, one can simplify

the exponent T (E) ∝ exp
(
−
√

2m∗ · (U0 − µ+ ∆E)
)
→ T (E) ∝ exp (−β∆E) [4]. Using Eq. (S2) in Eq. (S3) gives

T (E) ∝ exp

(
−2d

h̄

√
2 ·m∗(B = 0)

(
1 +

e2

h̄2 ·B
2
‖λ

4
z

)
(U0 − µ+ ∆E)

)
. (S4)

In Fig. S4b we show the exponential decay of the tunnel rate Γ0 in an in-plane magnetic field B‖ due to an increase
of the effective mass. We obtain excellent agreement with the model given in Eq. (S4) and find d ∼ 66 nm when using
U0−µ ∼ 5 meV [4]. This data was taken in a device with a different gate layout [11] that was fabricated on the same
wafer material as device 1 of our experiment. In contrast to the data presented in the main text, no adjustments of
the voltages defining the tunnel barrier were made here. However, to compensate for orbital effects on the quantum
dot, the voltage on the plunger gate was slightly adjusted for measurements at different fields. We do not expect any
significant change of the shape or position of the quantum dot for these small adjustments. The tunnel rates Γ0 were
obtained by analyzing real-time traces of resonant tunneling at zero detuning (∆E = 0) where f(E, kBT ) = 0.5.

E

x

U0

� �E

CB

d

1

10

100

1000

tu
nn

el
 r

at
e 

(H
z)

1050

magnetic field B

a b

FIG. S4. (a) Simplified schematic of the tunnel barrier defined by a modulation of the conduction band (CB) potential by
means of gate voltages. The electrostatically defined quantum dot is represented by its orbital ground state energy detuned by
∆E from the chemical potential µ. (b) The tunnel rate Γ0 decays exponentially with magnetic field strength because of the
increase of effective mass. Data taken for B ‖ Y in another device which was fabricated on the same 2DEG material as device
1.
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SUPPLEMENTAL SECTION 5: g-FACTOR CORRECTIONS IN DEVICE 2

In this section, we present the measured g-factor corrections for device 2. In Fig. S5, the extracted Zeeman splittings
∆EZ for different in-plane magnetic field angles φ are plotted in dependence of µBB, which allows us to extract the
absolute g-factor |g| by fitting with a linear function. The measurements for this device were done in five different
magnetic field directions, with φ = 315◦ (red), φ = 292.5◦ (orange), φ = 270◦ (green), φ = 241◦ (blue) and φ = 225◦

(purple).
To extract the corrections to the bulk g-factor, we then plotted these g-factors against φ and fitted a sinusoidal

function with a period of 180◦, yielding the mean value of the fit |ḡ| and the anisotropic correction δga as the amplitude
of the fit. For this device, we obtain |ḡ| ≈ 0.396 and δga ≈ 0.025.
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FIG. S5. Extracted Zeeman splittings ∆EZ and absolute g-factors in device 2 for different in-plane magnetic field strengths
and directions, given by the angle φ. The corresponding crystallographic directions of the traces are marked in the inset, and
the bulk g-factor of GaAs is indicated with a dashed line.



7

Supplementary References

∗ These authors contributed equally.
† Present address: Laboratory for Physical Sciences, 8050 Greenmead Drive, College Park, MD 20740, USA.
‡ Present address: Physics Department, Colorado School of Mines, Golden, CO, 80401, USA.

[1] L. C. Camenzind, L. Yu, P. Stano, J. D. Zimmerman, A. C. Gossard, D. Loss, and D. M. Zumbühl, Phys. Rev. Lett. 122,
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