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I. CALCULATION OF THE QUANTUM CORRECTIONS

The quantum corrections to the conductivity are obtained by considering that the electron

states used in calculating the scattering matrix element that determines the relaxation rate

are themselves modified by previous scattering processes. The coherent superposition of the

(time-reversed) scattered states leads to stable transport modes associated with a decrease

in the conductivity value known as the localization correction. Next we outline the main

steps in the calculation of these quantum corrections to the conductivity. We follow closely

the works of Iordanskii et al. [1], Knap et al. [2] and Marinescu [3]

In the following, we assume that scattering on impurities is elastic, spin-independent, and

involves only states at the Fermi surface, whose density of states per spin is ν0 = m∗/2πh̄2.

The scattering matrix element Vp,p′ of two electrons with momenta p and p′, dependent

only of the angle ϕ between the incident and scattered directions, gives rise to a scattering

lifetime τ0

h̄

τ0

= ν0

∫
|Vp,p′ |2(ϕ)dϕ , (S1)

within the first Born approximation. The propagation of the particles is described by im-

purity averaged advanced (A) and retarded (R) Green’s functions, written in terms of the

single particle Hamiltonian, Hp (see Eq. (2) in the main text) as,

G±(p, ε) =
1

ε−Hp ± i h̄2τ0
. (S2)
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As discussed in the main text, the main object in the theory of localization is the Cooperon

operator, which represents an impurity averaged scattering amplitude for an electron state p

that is almost perfectly backscattered into p′ ≈ −p; h̄q = p+p′, h̄q � p denotes deviations

from the p′ = −p case. In this limit, the quantum corrections to the conductivity can be

determined in terms of the Cooperon eigenvalues Ci(q) [4, 5]

∆σ = −2e2Dτ 2
0 ν0

h̄2

∑
q,i

Ci(q) , (S3)

where D = v2
F τ1/2 is the 2D diffusion coefficient, i indexes the singlet and triplet spin states

(to be discussed further below), vF the Fermi velocity and τ1 the transport scattering time.

The anisotropy of the scattering matrix element Vp,p′ [6] results in a series of transport

times, of which τ1 is the first (n = 1), defined by

h̄

τn
= ν0

∫
|Vp,p′ |2(1− cosnϕ)dϕ , (S4)

with n = 1, 2, 3... The impurity mediated Cooperon equation is

Cp,p′(q) = |Vp,p′ |2 +
∑
p′′

|Vp,p′′ |2G+
−p′′+h̄q,ε+h̄ωG

−
p′′,εCp′′,p′ . (S5)

To proceed, we first integrate the kernel in Eq. (S5) over the kinetic energy p2/2m∗ in the

complex plane then expand the result in terms of the scattering rate h̄/τ0, the leading term in

the denominator. Since after many scattering events the spin directions of the two electron

spins traveling along time-reversed paths are completely uncorrelated, we label them by

distinct indices σ and ρ, respectively. Thus Eq. (S5) becomes,

Cp,p′(q) = |Vp,p′′|2+ν0

∫ 2π

0

dϕp′′ |V (ϕp − ϕp′′)|2
{

1 + iωτ0 + iq · vp′′τ0 − (iq · vp′′)
2τ 2

0

+ [iΩp′′ × (σ + ρ) · ŷ] τ0 − [iΩp′′ × (σ + ρ) · ŷ]2 τ 2
0

− 2 (q · vp′′) [Ωp′′ × (σ + ρ) · ŷ] τ 2
0

}
Cp′′ ,p′(q).

(S6)

Let us now search for an iterative solution by expanding the Cooperon in terms of har-

monics: Cp,p′(q) = C
(0)
p,p′(q) + C

(1)
p,p′(q) cosϕp + C

(2)
p,p′(q) cos 2ϕp + . . ., with ϕp being the

angle between h̄q = p + p′ and p. The first order correction C
(1)
p,p′(q) is readily written in
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terms of the components of total spin J = (σ + ρ)/2 (in h̄ units) of the two electrons

∫ 2π

0

dϕp′′ |V (ϕp − ϕp′′)|2 {vq cosϕp′′

+ 2 [(α− β) sinϕp′′ − β3 sin 3ϕp′′ ] Jx

− 2 [(α + β) cosϕp′′ − β3 cos 3ϕp′′ ] Jz} . (S7)

Here ϕp′′ is the angle between p′′ and q, i.e., the same angular dependence of Cp′′,p′(q).

Noticing that

ν0

∫ 2π

0

dϕp′′ |V (ϕp − ϕp′′)|2 cosnϕp′′

= ν0

∫ 2π

0

dϕ|V (ϕp − ϕp′′)|2 cosn(ϕp − ϕp′′) cosnϕp

= cosnϕp

(
1

τ0

− 1

τn

)
=

(τn − τ0)

τ0τn
cosnϕp ≈

(τn − τ0)

τ 2
0

cosnϕp (S8)

with τ1 and τ3 given by Eq. (S4), we can cast the first-order correction to the Cooperon in

the form

C(1) = i(τ1 − τ0) [vp′′ · q + 2(α− β)Jx sinϕp′′

− 2(α + β)Jz cosϕp′′ ]

− i(τ3 − τ0) (−2β3Jx sin 3ϕp′′ + 2β3Jz cos 3ϕp′′)C
(0) . (S9)

Upon inserting C = C(0)+C(1) in the kernel of Eq. (S5) and performing some simplifications,

all contributions proportional to τ0 drop out. A further linearization of Eq. (S5) yields the

lowest order expression the for zeroth-order harmonic of the Cooperon

C
(0)
p,p′(q) =

|Vp,p′ |2

τ0H
, (S10)

where H is an operator in the 4-dimensional space associated with the total angular mo-
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mentum J , corresponding to the addition of the two spins, reading

H = Dq2 +
1

τϕ
+ 2k2

F

[
(α + β)2τ1 + β2

3τ3

]
J2
z

+ 2k2
F

[
(α− β)2τ1 + β2

3τ3

]
J2
x

+ 2kF (α− β)τ1vqzJx − 2kF (α + β)τ1vqxJz . (S11)

where we have replaced −iω by 1/τϕ, the dephasing time, a descriptor of the inelasticity of

the propagation. For convenience we introduce the following parameters

Q± =
2m∗(α± β)

h̄2 ,

Q3 =
2m∗β3

h̄2

√
τ3

τ1

. (S12)

We can then recast H as

H = Dq2 +
1

τϕ
+D

{[
Q2

+ +Q2
3

]
J2
z +

[
Q2
− +Q2

3

]
J2
x

+ 2Q−qzJx − 2Q+qxJz} . (S13)

At this point we can diagonalize H and easily find eigenvalues Ci(q) of the Cooperon

operator (via Eq. S10) and from Eq. S3 determine the weak localization corrections [1]. In

the next section we generalize the above procedure by including a magnetic field, essential

for probing weak localization experimentally, and outline the derivation of the general weak-

localization formula first derived in this work (see Eq. (5) in the main text).

Quantum Corrections in Presence of a Magnetic Field

In the presence of a quantizing magnetic field, the position representation of the Green’s

function G±(r, r′) is modified as [7]

G̃±(r, r′) = e
ie
h̄

∫ r′
r A(l)·dlG±(r, r′) , (S14)

a good approximation when the Landau orbit is larger than the Fermi wavelength. Because

of this approximation for the Green’s functions, it is convenient to work in position repre-

sentation. By following essentially the same protocol as in the previous section, i.e., from

Eqs. (S5) to (S10), but now in the position representation, we find that the denominator of
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the zeroth-order Cooperon acquires a phase (i.e., H → H̃ in Eq. S10)

H̃(r, r′) = ei
2e
h̄

∫ r′
r A(l)·dlH(r, r′) , (S15)

where the Fourier transform of H in the absence of the magnetic field is given in Eq. (S13).

This approximation is correct for |r − r′| � l, where l is the mean free path. In this case,

the integral defining the phase in Eq. S15 can be linearized to A · (r′− r). Now we can solve

the generalized eigenfunction-eigenvalue equation for H(r, r′),

∫
ei

2e
h̄
A·(r′−r)H(r, r′)ψ(r′)dr′ = Eψ(r) , (S16)

by taking advantage that the difference ∆r = r′− r is small so that the integrand above can

be expanded as a power series of ∆r. The kernel of the integral equation becomes,

H(r′ − r)

[
1 + i

2e

h̄
A ·∆r +

1

2

(
i
2e

h̄
A ·∆r

)2
]

×
[
ψ(r) +∇ψ ·∆r +

1

2
(∇ψ ·A)

]
= H(r′ − r)

{
1 +

(
∇+ i

2e

h̄
A

)
·∆r

+
1

2

[(
∇+ i

2e

h̄
A

)
·∆r

]2
}
ψ(r) . (S17)

By using the identity ∫
dr′H(r′ − r) (∆r)n =

∂nH(q)

in∂qn
|q=0 . (S18)

we can recast the expanded eigenfunction-eigenvalue equation for H(r, r′) in the form{
1 +

(
−i∇+

2e

h̄
A

)
· ∇q

+
1

2

[(
−i∇+

2e

h̄
A

)
· ∇q

]2
}
H |q=0 ψ(r)

= Eψ(r) .

(S19)

We consider a magnetic field B along the ŷ axis. In the Landau gauge, B can be expressed
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as the curl of the vector potential A = {Ax = B⊥z, Ay = 0, Az = 0}. Hence Eq. (S19)

becomes {
1

τϕ
+D

[
Q2

+ +Q2
3

]
J2
z +

[
Q2
− +Q2

3

]
J2
x

− 2DQ+Jz

(
−i∇x +

2eB⊥
h̄

z

)
+ 2DQ−Jx (−i∇z)

+ D

(
−i∇x +

2eB⊥
h̄

z

)2

+D (−i∇z)
2

}
ψ(r) = Eψ(r),

(S20)

with H(q) and its derivatives obtained from Eq.(S13). We now introduce z0 = kxh̄/2eB (kx

is the Cooperon wavevector along the x̂ direction) and define the canonical transformation,

−i∇z =
√

2eB⊥
h̄

(a−a†)
i
√

2
,

z + z0 = 1√
2eB⊥

h̄

(a+a†)√
2

, (S21)

so as to write Eq. (S20) into the number representation,{
1

τϕ
+D

(
Q2

+ +Q2
3

)
J2
z +

(
Q2
− +Q2

3

)
J2
x

−DQ+Jz

√
4eB⊥
h̄

(a+ a†)− iDQ−Jx

√
4eB⊥
h̄

(a− a†)

+ D

(
4eB⊥
h̄

)(
a†a+

1

2

)}
|u〉 = E|u〉 , (S22)

where |u〉 is the corresponding eigenket. Equation (S22) maintains the structure of the orig-

inal Cooperon in spin space (c.f. the corresponding eigenvalue equation for H in Eq. S13),

with q2 being replaced by 4eB⊥
h̄

(
a†a+ 1

2

)
, while its components qx and qz were replaced by√

4eB⊥
h̄

(a+a†)/2 and
√

4eB⊥
h̄

(a−a†)/2i respectively. To simplify our notation, in what follows

we introduce the following effective magnetic fields [1]: Bϕ = h̄/4eDτϕ, BSO+ = h̄Q2
+/4e,

BSO− = h̄Q2
−/4e , BSO3 = h̄Q2

3/4e, Btr = h̄/4eDτ1. Note that the solution of Eq. (S22) is

obtained as a spinor in the 4-dimensional spin space corresponding to the tensor product of

the two spin operators associated with the incident and scattered particle, respectively. In

what follow we work in the basis J, Jz of the total angular momentum J = 0 and J = 1 and

their corresponding z-components Jz = 0 and Jz = 1, 0− 1.
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The singlet J = 0, Jz = 0 solution is immediately factored, as it is diagonal both in the

spin and Landau level spaces. The n-th singlet Landau eingenvalue is

E0 =
4DeB⊥
h̄

(
n+

1

2
+
Bϕ

B⊥

)
, (S23)

or

Ẽn,0 =
E0

4DeB⊥
h̄

=

(
n+

1

2
+
Bϕ

B⊥

)
, (S24)

The triplet solutions can be obtained from Eq. (S22) (with 4eDB/h̄ factored out) written
as a 3× 3 matrix in the basis of J = 1, Jz = 1, 0,−1 via

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bϕ

B⊥
+

BSO+

B⊥
+

BSO−+3BSO3

2B⊥
−i
√

BSO−
2B⊥

(a− a†) BSO−+3BSO3

2B⊥

+a†a+ 1
2
−
√

BSO+

B⊥
(a+ a†)− Ẽ

−i
√

BSO−
2B⊥

(a− a†) Bϕ

B⊥
+

BSO−+BSO3

B
+ a†a+ 1

2
− Ẽ −i

√
BSO−
2B⊥

(a− a†)

BSO−+3BSO3

2B⊥
−i
√

BSO−
2B⊥

(a− a†) Bϕ

B⊥
+

BSO+

B⊥
+

BSO−+3BSO3

2B⊥

+a†a+ 1
2

+
√

BSO+

B⊥
(a+ a†)− Ẽ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 , (S25)

where Ẽ = E/(4DeB⊥/h̄).

In the limit where the two linear SOI constants are almost equal, BSO− � BSO+ and

BSO3 � BSO+, we can justifiably drop all off-diagonal terms proportional with BSO− or

BSO− + BSO3 in Eq. (S25). This regime corresponds to a decreased coupling between the

triplet modes within the same Landau level as the scattering processes do not involve spin

flip. The original orientation of the incident particle is preserved as the electron population

becomes polarized by the effective field BSO+ along the ẑ axis. As a further simplification,

we perform another canonical transformations on the operators a, a† in order to incorporate

the additional translation proportional to Q+,

−i∇z =
√

2eB⊥
h̄

(a−a†)
i
√

2
,

z + z0 ∓
h̄Q+

2eB⊥
= 1√

2eB⊥
h̄

(a+a†)√
2

, (S26)

where ∓ correspond to Jz = ±1, respectively.

The diagonalization of Eq. (S25) can be done separately for each spin mode straightfor-
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wardly as the determinant is diagonal. We find

Ẽn,1 = Ẽn,2 = n+ 1
2

+ Bϕ

B⊥
+ BSO−+3BSO3

2B⊥
, (S27)

Ẽn,3 = n+ 1
2

+ Bϕ

B⊥
+ BSO−+BSO3

B⊥
, (S28)

where for convenience we have indexed the eigenvalues as Ẽn,1, i = 1, 2, 3 corresponding to

the triplets with Jz = 1,−1, 0.

To calculate the corrections to the conductivity associated with Landau level diagonal

modes we have to replace the integral over q in Eq. S3 by a discrete sum over the occupied

Landau levels, which in turn can be expressed as a digamma function.

Final formula for the weak localization corrections. We obtain the corrections to the

conductivity as

∆σ(B⊥) =− e2

4π2h̄

[
Ψ

(
1

2
+
Bϕ

B⊥

)
+ 2 ln

Btr

B⊥
− 2Ψ

(
1

2
+
Bϕ

B⊥
+
BSO− + 3BSO3

2B⊥

)
−Ψ

(
1

2
+
Bϕ

B⊥
+
BSO− +BSO3

B⊥

)]
,

(S29)

The above closed-form formula is the main theoretical result of this paper and essential for

the two-stage fitting procedure used to accurately determine all the spin-orbit couplings in

our work. We emphasize that Eq. (S29) contains not only the linear Rashba but also the

linear and cubic Dresselhaus terms.

II. FULL ACCOUNT OF DATA

We account for all data measured on samples I and II in Fig. S1 - S5 in the same order as

in Fig. 4 of the main text. The data shown in Fig. S1 - S5 was obtained by measuring first

sample I and II, which was done twice within the same cooldown, giving the datasets 1 - 4.

Dataset 5 shows data on sample II after a thermal cycle. To test the concept of our method,

we took data on another sample with a 9.3 nm thick, asymmetrically doped quantum well

(sample III), where no WAL is observed at α = β. To obtain results, we calculated the value

of BSO3 with the previously determined values of γ and τ3/τ1 and only obtained τϕ in the

first evaluation step and then the value of BSO− as in the other cases. The corresponding

data is shown in Fig. S6.
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We first summarize the extracted values of the SO parameters α0, α1 and γ, the

scattering time ratio τ3/τ1 and the effective distances dT and dB for each sample. The

values of dT and dB are extracted from fits to the density map over the same range of gate

voltages, where the contours of constant density are linear. We note that the value of dB

in measurement #5 & #6 is smaller, because measurement #5 corresponds to a different

cooldown and measurement #6 to a different sample and wafer. The epitaxial values of dT

and dB are 75 nm and 1210 nm. The significantly smaller value of dB is due to the low

temperature grown GaAs buffer layer of 600 nm.

TABLE I. All relevant extracted data for the different samples.

Measurement # Sample α0 [meVÅ] α1 [eÅ2] γ [eVÅ3] τ3/τ1 dT [nm] dB [nm]

1 11 nm - I 1.7±0.6 9.3±0.3 13.4±1.2 0.21 107 750

2 11 nm - II 1.3±1.0 9.4±0.3 12.3±2.0 0.24 101 765

3 11 nm - I 0.9±0.7 9.8±0.2 10.2±1.4 0.37 107 750

4 11 nm - II 0.4±1.3 9.9±0.4 8.6±2.4 0.47 101 765

5 11 nm - II 1.6±1.4 8.4±0.3 12.8±2.7 0.23 102 736

6 9.3 nm - III 5.5±0.4 9.0±0.1 15.3±0.7 0.16 100 710

The following figures are organized as follows: The density map is shown in panel (a),

with the contours indicating the respective value of the density (in multiples of 1015 m−2).

The markers correspond to the manually determined symmetry points, the line in the same

color corresponds to the expected symmetry points from the extracted SO parameters and

the broken blue line corresponds to the expected symmetry points using the average of the

extracted SO parameters. Panel (b) shows the contours of constant mobility with its values

indicated in m2/Vs. Panel (c) shows the fits to the WAL traces at α ≈ β for all measured

densities. Panel (d) shows the extracted values of BSO3, Bϕ, τ3/τ1 and τϕ for the measured

densities. Panel (e) and (f) show the extracted values of BSO− (green markers) and its fit

(blue line) for each density, indicated in multiples of 1015 m−2.
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a. Dataset 1.
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FIG. S1. First measurement on sample I. Gate configurations were measured not in a particular

order and their spacing in back gate voltage is not equidistant, because at this stage the method

how to aquire data most reliably, was still in development.
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FIG. S2. First measurement on sample II. The mobility is slightly higher as in sample I. Data are

taken sequentially and back gate voltage spacing is chosen to be the same for each density.
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c. Dataset 3.
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FIG. S3. Second measurement on sample I, the data are aquired here as in the case of dataset 2.

The spacing between the gate configurations is the same for each density.

12



d. Dataset 4.
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FIG. S4. Second measurement on sample II, as in the previous measurements. Panel (d) middle:

The error bars on τ3/τ1 are so large because of the low value of γ ∼ 8.6 eVÅ3. The black dashed

line corresponds to the theoretical minimum of τ3/τ1.
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e. Dataset 5.
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FIG. S5. Third measurement on sample II in another cooldown.
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f. Dataset 6. Data from another wafer, which is doped asymmetrically and has a 9.3 nm

thick QW. The densities are much lower in this wafer resulting in a full suppression of WAL

at α ≈ β. The extracted SO values are within the range of the expected values for this

wafer, except the value of γ, which is larger than expected and we do not understand it fully

at this point.
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FIG. S6. First measurement on sample III (9.3 nm quantum well, asymmetrically doped).
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III. DETAILS ON EVALUATING BSO− AND BSO3

A. Symmetry point determination and value of BSO3

Here, we show how the value of BSO3 and the position of the symmetry point are de-

termined from the WAL traces. The data presented is from measurement 3 at a density

of 8.25×1015 m−2. Figure S7(a) shows the measured magnetoconductance traces along a

contour of constant density. We can clearly see how the WAL peak gets smaller with more

positive gate voltage and then starts to increase again. As described in the main text we fit

the expression for the quantum corrections and extract an effective SO value called B∗SO3

for each gate configuration, which will have a minimum around α ≈ β, see Fig. S7(b), as

the difference of between α and β should be very small and only the cubic term remains.

To obtain a value of BSO3, we perform fits to the WAL trace at the minimum and ±1 trace

from it, using Eq. (S29), where BSO− is set to zero, see Fig. S7(c)-(e). The final value for

BSO3 and τϕ is obtained by taking the average of the three respective values.

B. Validity of the theory

With the known values of BSO3 and τϕ the value of BSO− can be extracted from each WAL

trace. Here we show all measured magnetoconductivity traces with their respective fits to the

data of dataset 3. We can see that these fits give in general very good agreement within the

allowed fit range, given by BSO−, BSO3 � Btr the gray dashed line in each graph corresponds

to B⊥ = 0.5Btr. For WAL traces measured at more positive back gate voltage, the fit no

longer captures the full WAL trace, especially at low densities (n = 7.5− 8.25 × 1015m−2),

the extracted values of BSO− from these curves are then disregarded. The respective traces

are colored in gray.

The exclusion of the results from the fits to these traces also serves as a validity check

of the new theory. Equation (S29) is obtained in the limit of BSO− � BSO+. Using the

expressions for BSO± we can rewrite the condition and obtain in terms of α and β:

r ≡
∣∣∣∣α− βα + β

∣∣∣∣� 1, (S30)

which sets the range of the applicability of Eq. (S29) of the main text. By setting r ∼ 0.4,
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FIG. S7. Determination of α ≈ β for measurement 3. Panel (a) shows the WAL traces with their

gate voltage indicated. In (b) the obtained values of B∗SO3 are shown as a function of back gate,

showing a minimum at around -0.7 V. The blue dashed curve is a guide to the eye. Panels (c) to

(e) show fits to the corresponding WAL traces around the minimum. The black trace is where the

WAL peak is almost suppressed. This is the point, where α ≈ β.
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FIG. S8. Fits to WAL traces with only BSO− as a fit parameter for dataset 3. Each panel
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bound to the allowed fit range for each individual trace, given by B⊥ = 0.5Btr

a validity range can be defined in terms of top and back gate voltages. This range has to be

compared with the gate configurations measured and agrees well with the manually excluded
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gate configurations.
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