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S1. CALCULATED WAVE FUNCTIONS

We calculate the wave functions using the solution of the three dimensional anisotropic oscillator with confinement

frequencies ωx,y,z = Ex,y,z/h̄. We do not account for the triangular confinement potential along the z-direction

for which the solutions of the Schrödinger equation are Airy functions, since for nz = 0, the difference of these

confinements are found to be very small for the wave functions considered here1. Hence, we get
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where Hn is the n-th Hermite polynomial. Fig. S1-1 shows the solutions for the ground state and the first excited

states along the excitation axes x and y for the three configurations discussed in the main text. In contrast to the

exaggerated schematics in the main text, these realistic calculations only show subtle differences in real space between

the configurations.
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FIG. S1-1. Spatial representation of the wavefunctions
∣∣Ψnx,ny,nz

∣∣2 for a probability of presence larger than 90% for configu-
rations (a) Vshape = −900 mV (Ex = 1.8 meV, Ey = 2.7 meV), (b) Vshape = −550 mV (Ex = 2.4 meV, Ey = 2.6 meV) and (c)
Vshape = −300 mV (Ex = 3 meV, Ey = 1.8 meV).
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S2. TOTAL ENERGY CORRECTION DUE TO IN-PLANE MAGNETIC FIELD AND GROUND-STATE

BEHAVIOR

To avoid notation confusion, we defined the orbital energies Ex,y as the energy difference from the orbital ground

state to the excited orbital states. All energies presented in the main text are defined with respect to the spin-ground

state of the orbital ground state. The latter is a direct consequence of the measurement scheme which is explained in

Sec. S5 in more detail. In the zero-field case, Ex,y(B = 0) is the energy difference of the harmonic oscillator levels.

When a field is applied, Ex,y becomes a more abstract energy scale conceivable as an increase of the particle mass of

the harmonic oscillator. More precisely and as described in Ref.1, for the particle mass in the direction perpendicular

to the magnetic field m⊥, we obtain a mass renormalization due to a magnetic flux Φ = (e/h̄)Bλ2
z given by

1

m⊥(Φ2 � 1)
≈ 1

m⊥(Φ = 0)

(
1− Φ2

)
(2)

in the low field limit and

1
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≈ 1
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(
1
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)
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in the high field limit. Here λz is the effective width of the wave function along the growth direction penetrated by

the magnetic field B.

As also derivated in Ref.1, the magnetic field-induced energy correction to the total energy of the state (nx, ny) is

δEnx,ny
= −Φ2

2

[
h̄ωx sin2(δ − φ) (nx + 1/2) + h̄ωy sin2(δ + π/2− φ) (ny + 1/2)

]
(4)

where h̄ωx,y are the ladder spacings of the bi-harmonic oscillator at zero field and δ defines the dot orientation (see

Fig. 1). The energy h̄ωx,y corresponds to Enx,ny
(B = 0) in our measurements because we can only measure orbital

energies relative to the ground-state energy with spectroscopy method (see Sec. S5). Therefore, the ground state

dependence on the magnetic field has to be added to our data in order to obtain the energy correction of the harmonic

oscillator. Note that Eq. (4) is a result for small fields (Φ � 1) when ignoring inter-subband corrections which is

justified when only the lowest sub-band of the 2DEG is occupied (nz = 0). In Fig. S2-1, we show the two data sets

of Fig. 3 as corrections of the total energy by including the ground state energy correction. Here it is recognized

that in contrast to the spectroscopy measurements shown in Fig. 3, the effective energy modification of the orbital

perpendicular to the field (Ex + EGS) is rather small compared to the orbital oriented parallel to field (Ey + EGS)

because of increasing EGS .
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FIG. S2-1. Magnetic field-indcued energy corrections to the ground state (red) and excited orbital states (green, purple) for
(a) Vshape = −900 mV and (b) Vshape = −300 mV. The data for the excited states (triangles) was obtained by adding the
theoretically predicted ground state shift to data of Fig. 3. Ex and Ey indicate the energy measured in the experiment by the
excited orbital state spectroscopy technique.
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S3. CALCULATED ENERGIES OF THE GROUND- AND EXCITED ORBITAL STATES

From the experiment we are able to extract all parameters needed to calculate Enx,ny
(B,φ, δ, h̄ωx, ωy, ωz) using

Eq. (4). In Fig. S3-1, we present B − φ diagrams of the induced energy corrections for the three configurations

(Vshape = −900,−550 and −300 mV) discussed in the main text. Here, we use δ ∼ 225◦ and assume that the

quantum dot is aligned with the device coordinate system. Hence the small tilt (δ ∼ 215 ± 1◦) which is found for

Vshape = −550 mV is neglected for these calculations (see Fig. 3).

FIG. S3-1. Calculated energy dependence of the ground state (red), x-like (green) and y-like (dark purple) orbital excited
state for an in-plane magnetic field with angle φ and field strength B for configurations (a) Vshape = −900 mV (Ex = 1.8 meV,
Ey = 2.7 meV), (b) Vshape = −550 mV (Ex = 2.4 meV, Ey = 2.6 meV) and (c.) Vshape300 mV (Ex = 3 meV, Ey = 1.8 meV).
Interestingly, for the situation in (b) a crossing of the excited orbital energies is predicted for certain magnetic field directions.
The emerging of such a crossing is identified in the data in Fig. 3.
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S4. SHAPE INVARIANCE OF LEVERARM αP

The leverarm for different shapes Vshape (Fig. 2) is obtained via charge sensing thermometry by probing the Fermi-

Dirac occupation distribution of the electrons in the reservoir connected to the quantum dot (see Fig. 1) at an increased

temperature of T = 300 mK2,3. Therefore, we open the tunnel barrier such that the ground state shows a coupling

rate of a few hundreds Hz. This coupling is still well below the bandwidth of our charge sensor (∼ 30 kHz measured

using Low Noise/High Stability I to V converter SP983 by Basel Electronics) which allows us to measure resonant

tunneling in real time when the dot ground state level is placed within the temperature broadening kBT at the

chemical potential µ (Fig. S4-1(a)). Monitoring the conductance of the charge sensor Gsensor for certain waiting time

tw (about 5 s) allows us to calculate the dot occupation probability Pon by analyzing how long the dot was filled and

respectively, empty during tw. To do so we have to be able to discriminate the charge state during tw (Fig. S4-1(b)).

Therefore, a charge state separation threshold is determined retrospectively from Gsensor histograms (dashed line

Fig. S4-1(c)). Using this threshold the real time trace is binarized (seen as green and blue curve in Fig. S4-1(b)) The

total time the dot has been occupied is Ton and respectively, empty Toff during tw. Then Pon = Ton/(Ton + Toff ) is

calculated.
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FIG. S4-1. (a) Resonant tunneling occurs when the level of the quantum dot is aligned with the Fermi-Dirac temperature
broadened occupation distribution f(E) around the chemical potential µ of the reservoir. At this energies, occupied as well as
unoccupied states are available in the reservoir (lower panel). Therefore, electrons can tunnel from filled state into the empty
quantum dot (upper panel) or from the occupied quantum dot into an empty state of the reservoir. When the tunnel barrier
is tuned accordingly, this leads to electrons tunneling in and out of the dot as a function of time. (b) In the sensor Gsensor the
resonant tunneling is recognized as a fluctuating two-level system. (c) Histogram of Gsensor allows to reliably define a charge
state separation threshold with which the charge states are assigned in measurements such as shown in (b), indicated with the
green (charged dot) and blue (empty dot) traces. From this, the total charging probability Pon and also the tunnel-rate4 are
calculated.

Measuring Pon for various detuning ∆VP exhibits

Pon(∆VP ) =

(
1 +

1

2
exp

(
−e · αP · (∆VP − VP )

kBT

))−1

(5)

with VP being a voltage offset, αP the lever arm and kBT the thermal energy of the electrons in the reservoir.

In general, the temperature of the electronic system is larger than the mixing chamber temperature of the dilution

refrigerator (≈ 25 mK)5. Also a wider distribution is beneficial to later reduce the effective error on the extracted

leverarm, we, therefore, heat up the system to 300 mK where the electronic temperature equals to the temperature of
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the mixing chamber. In Fig. S4-2, we show Pon(∆VP ) for a dot shape configuration Vshape = −900 mV (see Fig. 2).

Because this technique is very sensitive to stochastic charge rearrangements in the semiconductor3, we repeat this

measurement between 3 and 10 times.
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FIG. S4-2. Dependence of the quantum dot occupation probability Pon as a function of detuning ∆VP obtained for a shape
Vshape = −900 mV at a temperature of 300 mK. Different traces correspond to various repetitions and are offset for clarity.

We fit each measurements individually to Pon ∼ 1/ (1 + 0.5 · exp (−(∆Vp − VP )/z)) where 1/z = αP /kbT . Fig. S4-3

presents data for the configurations of Vshape showed in Fig. 2. The extracted fit-parameter z only shows a small

deviation for different repetitions which indicates that this method gives consistent and reliable results. We also

show data for Vshape = −200 mV. At this configuration, the gate voltages at the plunger gates (VLP = VCP = VRP =

−200 mV) are very small and are barely enough to deplete the 2DEG underneath. This leads to a very soft confinement

potential at the bottom side of the device and the quantum dot is defined closer to gate CP leading to a sharp increase

in the leverarm compared to the other configurations (see also Fig. S4-4(b)). Because of the soft confinement, charges

can be trapped under these gates which significantly complicates gating of the system (e.g. by pulsing). Therefore

the pulsed gate spectroscopy data for this configuration is unreliable and is not presented in the text.

In Fig. S4-4 we compare z as well as the resulting αP for different shape configurations. We apply similar voltages

to the gates LW and RW and balance these changes with LP, CP and RP which share the nominal voltage. The

voltage on the nose N is found by adjusting the tunnel barrier between LW and N such that the tunnel coupling to

the reservoir is in the range of 10 to 100 Hz. Since the quantum dot shape manipulation is balanced to keep the dot

in the center of the device, without Vshape = −200 mV, the leverarm αP shows only a weak dependence on the shape

configuration Vshape The gate voltages for different configurations Vshape are found to be highly reproducible even for

multiple cool-downs.
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FIG. S4-3. Extracted fit parameter z = kbT/αP from measurements of the Fermi-Dirac distribution for different shape
configurations.
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FIG. S4-4. Different Vshape also leads to change in the capacity of the dot to plunger gate CP and therefore levararm αP . αP

is obtained by probing the Fermi-Dirac distribution of the reservoir by charge sensing thermometry at 300 mK3.
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S5. MEASURING EXCITED ORBITAL STATE ENERGIES

Our spectroscopy of quantum dot orbitals strongly relies on the ability to measure the coupling of the orbital

excited states to the reservoir6. In this section we provide some additional experimental details on how this coupling

is measured.

We obtain the orbital excitation energies, by measuring the coupling of the single-particle states in an empty

quantum dot to the connected reservoir. For the situation in which an excited orbital state (EOS) is in resonant

with the chemical potential of the reservoir µ (see Fig. 1), it is energetically more favorable for the electrons to

tunnel into the energetically lower orbital ground state. As soon as an electron has tunneled on the dot, the dot

goes into Coulomb blockade which prevents additional electron tunneling into EOS. Therefore, the the EOS has to be

brought into resonance with µ on a timescale much faster than the GS is filled. Experimentally, this is achieved by

pulsing the single particle energy states of the empty quantum dot faster than the tunnel rate in to the GS. In this

situation electrons prefer to tunnel into the energetically higher excited state because this states couples stronger to the

reservoir than the orbital ground-state7. There are two reasons for this increased coupling. For a rectangular barrier,

the transmission coefficient T (E) ∼ exp(−2
√

2m/h̄2 · |V0 − E|) as found in WKB approximation is exponentially

sensitive to energy detuning with respect to the chemical potential of the reservior. Therefore, the potential through

which the electrons have to tunnel is much larger for the energetically more detuned GS (see Fig. 1(b)). For the same

reason,coupling of the EOS becomes exponentially suppressed once detuned fromµ as indicated with the black dotted

curves in Fig. 1(c). Also, the spatial span of the excited orbital states is increased compared to the ground state (see

Fig. S1-1). This leads to an larger overlap of the quantum dot wave function with the wave functions of the electrons

in reservoir and results in an increased tunnel coupling.

In the experiment the coupling of the first excited states is found to be orders of magnitudes stronger. The device is

tuned such that the tunnel coupling of the GS is between 10-100 Hz which leads to EOS couplings of tens of kHz. We

note that different coupling of the individual EOS has been observed when manipulating the shape of the quantum dot

because of accompanied changes in orientation and extent of the wave function. The EOS coupling rates often exceed

the bandwidth of our charge sensor ( 30 kHz) and are therefore note directly resolvable. We overcome this limitation

by exploiting the fact that the pulse bandwidth of our gates (∼1 MHz4) exceeds the sensor bandwidth by orders of

magnitudes. Therefore, this fast couplings can be resolved by having the EOS resonant with µ for a pulse duration

tw when applying pulses to the plunger gate CP (see Fig. S5-1(a)). An electron tunneling into an EOS will decay

into the orbital ground state under the emission of a phonon8 (Fig. 1(b)). This process happens on GHz timescale

and leads to the electron being trapped in the orbital GS. After tw, the dot is pulsed such that the GS is resonant

with µ and the charge sensor conductance GSensor is monitored for 500µs which allows to discriminate if the pulse

lead to a charging of the dot. Because of the finite tunnel coupling of the GS to the reservoir, four different events

are distinguishable in the read-out time: either the dot is empty or charged or an electron tunnels out respectively in

to the dot. These events are detected and taken into account for the statistics of the charging probability Pon. For

the tunnel rates and read out times chosen, only a few percent of the read out traces actually show a tunneling event

which reduces the amount of misinterpreted read out outcomes due to missed events. To illustrate the measurement

outcome, we present the dependence of Pon on different amplitudes ∆Vp and waiting times tw in Fig. S5-2. Here, the

EOS are observed as sharp increases of Pon for different tw given by their individual coupling. The loading probability
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is Pon = 1− e−Γin·tw which allows us to obtain Γin by fitting to Pon(tw). Because the general scaling of the coupling

(e.g. coupling of GS) is different, it is not useful to compare values of the coupling Γin of particular measurements.

In interest of time, we therefore often conducdt the excited orbital spectroscopy for one carefully chosen tw and only

extract the energies of the EOS.
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FIG. S5-1. (a) Examplary shape of a three step pulse applied to gate CP for ∆VP = 60 mV (red trace): in the first 0.5 ms the
dot is depleted at a negative energy detuning. The dot is then pulsed into the charging state for tw = 0.1 ms in this case. To
read-out the dot is pulsed such that the orbital ground state is resonant with the chemical potential µ. Here the charge sensor
is monitored for about 200µs. Because the specific sensor conductance GSensor for the charge states are known, this allows
to determine if the dot is empty (blue trace) or if it has been charged during the charging step (green trace). The first 300µs
during the read-out state are cut because the sensor has to relax from the capacitive cross-talk from the large pulse amplitudes
applied here. (b) An assembled segment of 180 read-out traces out of a 2000 pulse sequence used to resolve the charging
probability Pon. (c) Histogram of the values of the charge sensor during read-out confirms the capability to distinguish the
charge states in a single shot measurement. Here, the total counts for both charge states are very comparable which indicates
Pon 0.5.
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FIG. S5-2. (a) Probability for the dot being loaded after charge pulse with depth ∆Vp and waiting time tw for a configuration
Vshape = −700 mV. The arrows depict the ground state (red) as well as the x-like (green) and y-like (purple) excited orbital
states. Note that the x-axis is not linear. (b) Cut along tw as indicated with the bright blue line in (a). By fitting an exponential
function, the total coupling of the quantum dot Γin(∆VP ) is obtained. (c) Cut along the dark blue line in (a) shows all states.
For most of the measurements, spectroscopy with a single tw was performed whereas tw was chosen such that all relevant states
are resolved.
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