
SUPPLEMTARY NOTE 1: WEAK LOCALIZATION FORMALISM

Here we outline the main steps of the algorithm leading to the Cooperon operator, H

following the standard WL formalism [1] starting from the single particle Hamiltonian, Hp,

(Eqs. (5) and (1), in the main manuscript, respectively).

The impurity mediated Cooperon satisfies,

Cp,p′(q) = |Vp,p′ |2 +
∑
p′′

|Vp,p′′ |2G+
−p′′+~q,ε+~ωG

−
p′′,εCp′′,p′ . (1)

The propagation of the particles is described by impurity averaged advanced (A) and

retarded (R) Green’s functions, given by

G±(p, ε) =
1

ε−Hp ± i ~
2τ0

. (2)

τ0 is the impurity scattering relaxation time, D = v2τ1/2 is the diffusion coefficient in

two dimensions expressed as a function of the transport time, τ1.

The Cooperon operator is obtained by linearizing Eq. (1) in an iterative approach [1, 3–5]

leading to a formal equation written as,[1]

Cp,p′(q) =
|Vp,p′ |2

τ0H0

, (3)

where H0 is an operator in the 4-dim total spin space,

H0 = Dq2 +
1

τϕ
+ 2k2F

[
(α + β)2τ1 + β2

3τ3
]
J2
z + 2k2F

[
(α− β)2τ1 + β2

3τ3
]
J2
x

+ 2kF (α− β)τ1vqzJx − 2kF (α + β)τ1vqxJz . (4)

−iω is replaced by 1/τϕ, the dephasing time, a descriptor of the inelasticity of the propaga-

1



tion. We define,

QS =
2m∗(α + β)

~
,

QA =
2(α + β)

~
,

Q3 =
2m∗β3

~

√
τ3
τ1
, (5)

and rewrite H0 as

H0 = Dq2 +
1

τϕ
+D

{[
Q2
S +Q2

3

]
J2
z +

[
Q2
A +Q2

3

]
J2
x + 2QAqzJx − 2QSqxJz

}
. (6)

CORRECTIONS TO THE MAGNETOCONDUCTIVITY

In the presence of a quantizing magnetic field, the position representation of the Green’s

function G±(r, r′) is modified as [6]

G(r, r′) = e
ie
~
∫ r′
r A(l)·dlG±(r, r′) . (7)

The change in the phase of the Green’s function induces a transformation in the position

representation of H(r, r′) which now satisfies an eigenfunction-eigenvalue equation,

∫
ei

2e
~ A·(r′−r)H0(r, r

′)ψ(r′)dr′ = Eψ(r) . (8)

The integral equation is linearized by expanding the integrant in a power series in r′ − r

assumed to be small in comparison with the electron mean free path. In this approximation

H0(r, r
′) satisfies,

{
1 +

(
−i∇+

2e

~
A

)
· ∇q +

1

2

[(
−i∇+

2e

~
A

)
· ∇q

]2}
H0 |q=0 ψ(r) = Eψ(r) . (9)

In a selection of axes with ŷ perpendicular on the plane, the magnetic vector potential A in

the Landau gauge is A = {Ax = Bz,Ay = 0, Az = 0}. Consequently, Eq. (9) is transformed
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into, with H0(q) and its derivatives obtained from Eq.(6),{
1

τϕ
+D

[
Q2
S +Q2

3

]
J2
z +

[
Q2
A +Q2

3

]
J2
x − 2DQSJz

(
−i∇x +

2eB

~
z

)
+ 2DQAJx (−i∇z)

+ D

(
−i∇x +

2eB

~
z

)2

+D (−i∇z)
2

}
ψ(r) = Eψ(r) . (10)

With z0 = kx~/2eB, we define canonical operators,

−i∇z =
√

2eB
~

(a−a†)
i
√
2
,

z + z0 = 1√
2eB
~

(a+a†)√
2

, (11)

such that we obtain for the characteristic equation in the number representation,

{
1

τϕ
+D

(
Q2
S +Q2

3

)
J2
z +

(
Q2
A +Q2

3

)
J2
x −DQSJz

√
4eB

~
(a+ a†)− iDQAJx

√
4eB

~
(a− a†)

+ D

(
4eB

~

)(
a†a+

1

2

)}
|u〉 = E|u〉 , (12)

where |u〉 is the corresponding eigenket.

The left-hand side of the Eq. (12) defines operator H, which maintains the structure of

the original Cooperon, Eq. (6) in spin space, with q2 being replaced by 4eB
~

(
a†a+ 1

2

)
, while

its components qx and qz were replaced by
√

4eB
~ (a+a†)/2 and

√
4eB
~ (a−a†)/2i respectively.
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