SUPPLEMTARY NOTE 1: WEAK LOCALIZATION FORMALISM

Here we outline the main steps of the algorithm leading to the Cooperon operator, \mathcal{H} following the standard WL formalism [1] starting from the single particle Hamiltonian, $H_{\mathbf{p}}$, (Eqs. (5) and (1), in the main manuscript, respectively).

The impurity mediated Cooperon satisfies,

$$
\begin{equation*}
C_{\mathbf{p}, \mathbf{p}^{\prime}}(\mathbf{q})=\left|V_{\mathbf{p}, \mathbf{p}^{\prime}}\right|^{2}+\sum_{\mathbf{p}^{\prime \prime}}\left|V_{\mathbf{p}, \mathbf{p}^{\prime \prime}}\right|^{2} G_{-\mathbf{p}^{\prime \prime}+\hbar \mathbf{q}, \epsilon+\hbar \omega}^{+} G_{\mathbf{p}^{\prime \prime}, \epsilon}^{-} C_{\mathbf{p}^{\prime \prime}, \mathbf{p}^{\prime}} \tag{1}
\end{equation*}
$$

The propagation of the particles is described by impurity averaged advanced (A) and retarded (R) Green's functions, given by

$$
\begin{equation*}
G^{ \pm}(\mathbf{p}, \epsilon)=\frac{1}{\epsilon-H_{\mathbf{p}} \pm i \frac{\hbar}{2 \tau_{0}}} \tag{2}
\end{equation*}
$$

τ_{0} is the impurity scattering relaxation time, $D=v^{2} \tau_{1} / 2$ is the diffusion coefficient in two dimensions expressed as a function of the transport time, τ_{1}.

The Cooperon operator is obtained by linearizing Eq. (1) in an iterative approach [1, 3-5] leading to a formal equation written as, [1]

$$
\begin{equation*}
C_{\mathbf{p}, \mathbf{p}^{\prime}}(\mathbf{q})=\frac{\left|V_{\mathbf{p}, \mathbf{p}^{\prime}}\right|^{2}}{\tau_{0} \mathcal{H}_{0}} \tag{3}
\end{equation*}
$$

where \mathcal{H}_{0} is an operator in the 4 -dim total spin space,

$$
\begin{align*}
& \mathcal{H}_{0}=D q^{2}+\frac{1}{\tau_{\varphi}}+2 k_{F}^{2}\left[(\alpha+\beta)^{2} \tau_{1}+\beta_{3}^{2} \tau_{3}\right] J_{z}^{2}+2 k_{F}^{2}\left[(\alpha-\beta)^{2} \tau_{1}+\beta_{3}^{2} \tau_{3}\right] J_{x}^{2} \\
& +2 k_{F}(\alpha-\beta) \tau_{1} v q_{z} J_{x}-2 k_{F}(\alpha+\beta) \tau_{1} v q_{x} J_{z} \tag{4}
\end{align*}
$$

- $i \omega$ is replaced by $1 / \tau_{\varphi}$, the dephasing time, a descriptor of the inelasticity of the propaga-
tion. We define,

$$
\begin{align*}
Q_{S} & =\frac{2 m^{*}(\alpha+\beta)}{\hbar} \\
Q_{A} & =\frac{2(\alpha+\beta)}{\hbar} \\
Q_{3} & =\frac{2 m^{*} \beta_{3}}{\hbar} \sqrt{\frac{\tau_{3}}{\tau_{1}}} \tag{5}
\end{align*}
$$

and rewrite \mathcal{H}_{0} as

$$
\begin{equation*}
\mathcal{H}_{0}=D q^{2}+\frac{1}{\tau_{\varphi}}+D\left\{\left[Q_{S}^{2}+Q_{3}^{2}\right] J_{z}^{2}+\left[Q_{A}^{2}+Q_{3}^{2}\right] J_{x}^{2}+2 Q_{A} q_{z} J_{x}-2 Q_{S} q_{x} J_{z}\right\} \tag{6}
\end{equation*}
$$

CORRECTIONS TO THE MAGNETOCONDUCTIVITY

In the presence of a quantizing magnetic field, the position representation of the Green's function $G^{ \pm}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ is modified as $[6]$

$$
\begin{equation*}
G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=e^{\frac{i e}{\hbar} \int_{\mathbf{r}}^{\mathbf{r}^{\prime}} \mathbf{A}(\mathbf{l}) \cdot d \mathbf{l}} G^{ \pm}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \tag{7}
\end{equation*}
$$

The change in the phase of the Green's function induces a transformation in the position representation of $\mathcal{H}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ which now satisfies an eigenfunction-eigenvalue equation,

$$
\begin{equation*}
\int e^{i \frac{2 e}{\hbar} \mathbf{A} \cdot\left(\mathbf{r}^{\prime}-\mathbf{r}\right)} \mathcal{H}_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}=\mathcal{E} \psi(\mathbf{r}) \tag{8}
\end{equation*}
$$

The integral equation is linearized by expanding the integrant in a power series in $\mathbf{r}^{\prime}-\mathbf{r}$ assumed to be small in comparison with the electron mean free path. In this approximation $\mathcal{H}_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ satisfies,

$$
\begin{equation*}
\left.\left\{1+\left(-i \nabla+\frac{2 e}{\hbar} \mathbf{A}\right) \cdot \nabla_{\mathbf{q}}+\frac{1}{2}\left[\left(-i \nabla+\frac{2 e}{\hbar} \mathbf{A}\right) \cdot \nabla_{q}\right]^{2}\right\} \mathcal{H}_{0}\right|_{\mathbf{q}=0} \psi(\mathbf{r})=\mathcal{E} \psi(\mathbf{r}) \tag{9}
\end{equation*}
$$

In a selection of axes with \hat{y} perpendicular on the plane, the magnetic vector potential \mathbf{A} in the Landau gauge is $\mathbf{A}=\left\{A_{x}=B z, A_{y}=0, A_{z}=0\right\}$. Consequently, Eq. (9) is transformed
into, with $\mathcal{H}_{0}(\mathbf{q})$ and its derivatives obtained from Eq.(6),

$$
\begin{align*}
& \left\{\frac{1}{\tau_{\varphi}}+D\left[Q_{S}^{2}+Q_{3}^{2}\right] J_{z}^{2}+\left[Q_{A}^{2}+Q_{3}^{2}\right] J_{x}^{2}-2 D Q_{S} J_{z}\left(-i \nabla_{x}+\frac{2 e B}{\hbar} z\right)+2 D Q_{A} J_{x}\left(-i \nabla_{z}\right)\right. \\
& \left.+D\left(-i \nabla_{x}+\frac{2 e B}{\hbar} z\right)^{2}+D\left(-i \nabla_{z}\right)^{2}\right\} \psi(\mathbf{r})=\mathcal{E} \psi(\mathbf{r}) \tag{10}
\end{align*}
$$

With $z_{0}=k_{x} \hbar / 2 e B$, we define canonical operators,

$$
\begin{align*}
& -i \nabla_{z}=\sqrt{\frac{2 e B}{\hbar}} \frac{\left(a-a^{\dagger}\right)}{i \sqrt{2}} \\
& z+z_{0}=\frac{1}{\sqrt{\frac{2 e B}{\hbar}}} \frac{\left(a+a^{\dagger}\right)}{\sqrt{2}} \tag{11}
\end{align*}
$$

such that we obtain for the characteristic equation in the number representation,

$$
\begin{align*}
& \left\{\frac{1}{\tau_{\varphi}}+D\left(Q_{S}^{2}+Q_{3}^{2}\right) J_{z}^{2}+\left(Q_{A}^{2}+Q_{3}^{2}\right) J_{x}^{2}-D Q_{S} J_{z} \sqrt{\frac{4 e B}{\hbar}}\left(a+a^{\dagger}\right)-i D Q_{A} J_{x} \sqrt{\frac{4 e B}{\hbar}}\left(a-a^{\dagger}\right)\right. \\
& \left.+D\left(\frac{4 e B}{\hbar}\right)\left(a^{\dagger} a+\frac{1}{2}\right)\right\}|u\rangle=\mathcal{E}|u\rangle \tag{12}
\end{align*}
$$

where $|u\rangle$ is the corresponding eigenket.
The left-hand side of the Eq. (12) defines operator \mathcal{H}, which maintains the structure of the original Cooperon, Eq. (6) in spin space, with q^{2} being replaced by $\frac{4 e B}{\hbar}\left(a^{\dagger} a+\frac{1}{2}\right)$, while its components q_{x} and q_{z} were replaced by $\sqrt{\frac{4 e B}{\hbar}}\left(a+a^{\dagger}\right) / 2$ and $\sqrt{\frac{4 e B}{\hbar}}\left(a-a^{\dagger}\right) / 2 i$ respectively.
[1] D. C. Marinescu, Phys. Rev. B 96, 115109 (2017).
[2] L. P. Gor’kov, A. I. Larkin, and D. E. Khmelnitskii, Pis'ma Zh. Eksp. Teor. Fiz. 30, 248 (1979).
[3] S. V. Iordanskii, Y. B. Lyanda Geller, and G. E. Pikus, Pis'ma Zh. Eksp. Teor. Fiz. 60, 199 (1994).
[4] F. G. Pikus and G. E. Pikus, Phys. Rev. B 51, 16928 (1995).
[5] W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin-Staszewska, D. Bertho, F. Kobbi, J. L. Robert, G. E. Pikus, F. G. Pikus, S. V. Iordanskii, V. Mosser, K. Zekentes, and Y. B. LyandaGeller, Phys. Rev. B 53, 3912 (1996).
[6] B. L. Altshuler, D. Khmel'nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).

