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Turbulence in Mode-Locked Lasers
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We show that the well-known instability in actively mode-locked lasers with detuning between the
resonator round-trip time and the modulator period exhibits a transition to turbulence analogous to flu
flow. We derive a universal normalized detuning of the laser that plays the same role as Reynold
number in fluid flow. This is the first time that the recently proposed theory for the onset of turbulence
in hydrodynamics is verified in a system outside of hydrodynamics. [S0031-9007(99)09268-6]
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The transition from laminar to turbulent flow in hydro-
dynamics has puzzled physicists for more than a hundr
years [1]. During the last 5 to 10 years a scenario for th
transition to turbulence has been put forward by Trefeth
and others [2]. This model does not only give a qua
titative description of the kind of instability that leads to
a transition from laminar, i.e., highly ordered dynamics
to turbulent flow, i.e., chaotic motion, but it also give
an intuitive physical picture of why turbulence is occur
ring. According to this theory, turbulence is due to stron
non-normal transient growth of deviations from a stab
stationary point of the system together with a nonline
feedback mechanism. The nonlinear feedback mechan
couples part of the amplified perturbation back into th
initial perturbation. Therefore, the perturbation exper
ences the strong growth repeatedly. Once the non-norm
transient growth is large enough, a slight perturbatio
from the stable stationary point renders the system d
namics turbulent. Small perturbations are always prese
in real systems in the form of system intrinsic noise or e
vironmental noise and in computer simulations due to th
finite precision. The predictions of the linearized stabilit
analysis become meaningless in this case. The model c
studied here also gives insight into the drifting pulse dy
namics in complex Ginzburg-Landau equations [3], whic
were discovered in convection experiments with bina
liquids [4]. The analysis laid out in this Letter might also
lead to an improved understanding of noise-sustained co
vective structures in nonlinear optics [5].

In this Letter, we show for the first time that the sce
nario for a transition to turbulence, or chaotic motion i
general, as presented in [2], is not bound to hydrodyna
ics but occurs in other systems as well. In particular, w
show that the detuned actively mode-locked laser is an e
cellent example for such a system which in addition ca
be studied analytically. The dynamics of actively mode
locked lasers is a rather old topic and has been studied
great detail theoretically as well as experimentally [6,7
However, the detuned case has been studied only eit
experimentally [8,9] or by numerical simulations [10]. A
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theoretical approach was never presented. The reason
this lack in analytical approaches to this problem seem
to be precisely due to the kind of instability that arises i
the detuned system. This type of instability cannot be d
tected by a linear stability analysis which is widely used i
laser theories to prove stable pulse formation. The ca
studied here might be not only of fundamental intere
but might give also an analytical insight into the stabil
ity problems associated with asynchronously mode-lock
lasers and soliton storage rings which will be importan
for future high-speed optical communication systems [11

The equation of motion for the pulse envelope in a
actively mode-locked laser with detuning can be writte
as [7]

TM
≠AsT , td

≠T


"
gsTd 2 l 1 Df

≠2

≠t2

2 Mf1 2 cossvMtdg 1 Td
≠

≠t

#
AsT , td .

(1)

Here,AsT , td is the slowly varying field envelope whose
shape is studied on two time scales. There is the timeT
which is coarse grained on the time scale of the resona
round-trip time TR and the timet, which resolves the
resulting pulse shape. The saturated gain is denoted
g, the curvature of the intracavity losses in the frequenc
domain, which limit the bandwidth of the laser, is given
by Df . M is the depth of the loss modulation introduce
by the modulator with angular frequencyvM  2pyTM ,
whereTM is the modulator period. The detuning betwee
resonator round-trip time and the modulator period
Td  TM 2 TR . The saturated gaing obeys a separate
ordinary differential equation

≠gsT d
≠T

 2
gsT d 2 g0

tL
2 g

WsT d
PL

. (2)

Here, g0 is the small signal gain due to the pumping
PL the saturation power of the gain medium,tL the gain
relaxation time, andWsT d 

R
jAsT , tdj2 dt the total field

energy stored in the cavity at timeT .
© 1999 The American Physical Society
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The pulses, we expect, have a pulse width much shor
than the round-trip time in the cavity and will be place
in time at the position where the modulator introduce
low loss. Furthermore, we restrict our consideration
to the case where the modulation depth,M, of the
modulator is large, such that only during the time of low
intracavity loss, which is much shorter than the round
trip time, radiation can build up. In that case, we ca
approximate the cosine by a parabola and obtain t
simplified evolution equation

TM
≠A
≠T



"
g 2 l 1 Df

≠2

≠t2 2 Mst2 1 Td
≠

≠t

#
A . (3)

Here, Ms  Mv
2
My2 denotes the curvature of the loss

modulation at the point of minimum loss and, therefore,
characterizes the modulator strength. The timet is now
allowed to range from2` to 1`, since the modulator
losses make sure that only during the physically allowe
range2TRy2 ø t ø TRy2 radiation can build up. Con-
sequently, the domain of the partial differential operato
appearing on the right side of Eq. (3) is the space of abs
lute square integrable complex functions on the real axi

In the case of vanishing detuning, i.e.,Td  0, the
differential operator on the right side of (3), which
we denote as the Liouville operator̂L, corresponds
to the Schrödinger operator of the harmonic oscillato
Therefore, it is useful to introduce the creation an
annihilation operators
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(4)

with ta  4
p

DfyMs. The Liouville operator L̂ is
given by

L̂  g 2 l 2 2
q

DfMs

√
âyâ 1

1
2

!
, (5)

and the evolution equation (3) can be written as

TM
≠A
≠T

 L̂A . (6)

Consequently, the eigensolutions of this Liouville opera
tor are the Hermite Gaussians

AnsT , td  unstdelnTyTM , (7)

unstd 

s
Wn

2n
p

pn! ta
Hnstytade2st2y2t2

ad , (8)

where ta is the pulse width of the Gaussian. The
eigenmodes are orthogonal to each other because
Liouville operator is Hermitian in this case.

The round-trip gain of the eigenmodeunstd is
given by its eigenvalue (or in general by the rea
part of the eigenvalue) which is given byln  gn2
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with Wn 
R

junstdj2 dt. The eigenvalues prove tha
for a given pulse energy the mode withn  0, which
we call the ground mode, experiences the largest ga
Consequently, the ground mode will saturate the gain t
value so thatl0  0 in steady state and all other mode
experience net loss,ln , 0 for n . 0. This is a stable
situation, as can be shown rigorously by a lineariz
stability analysis [7]. Thus active mode locking with
perfect synchronization produces Gaussian pulses wit
1ye half-width of the intensity profile given byta. This
has been well known since the early work of Siegman [6

In the case of nonzero detuningTd, the situation
becomes more complex. The Liouville operator (5
changes to

L̂D  g 2 l 2 2
q

DfMs

"µ
ây 2 D

∂
sâ 1 Dd

1

√
1
2

1 D2

!#
, (9)

with the normalized detuning

D 
1

2
p

2DgMs

Td

ta
. (10)

Introducing the shifted creation and annihilation ope
ators, b̂y  ây 1 D and b̂  â 1 D, respectively, we
obtain

L̂D  Dg 2 2
q

DfMs sb̂yb̂ 2 2Db̂d , (11)

with the excess gain

Dg  g 2 l 2 2
q

DfMs

√
1
2

1 D2

!
(12)

due to the detuning. Note, the resulting Liouville oper
tor is no longer Hermitian and even not normal, i.e
fA, Ayg fi 0, which causes the eigenmodes to becom
non-normal [12]. Nevertheless, it is an easy exercise
compute the eigenvectors and eigenvalues of the n
Liouville operator in terms of the eigenstates ofb̂yb̂, jll,
which are the Hermite Gaussians centered aroundD. The
eigenvectorsjwnl to L̂D are found by the ansatz

jwnl 
nX

l0

cn
l jll, with cn

l11 
n 2 l

2D
p

l 1 1
cn

l . (13)

The new eigenvalues areln  gn 2 l2 2
p

DfMs sD2 1

n 1 0.5d. By inspection, it is again easy to see that th
new eigenstates form a complete basis inL2sRd. How-
ever, the eigenvectors are no longer orthogonal to ea
other. The eigensolutions as a function of time are giv
as a product of a Hermite polynomial and a shifted Gau

ian unstd  ktjwnl , Hnstytad expf2 st2
p

2 Dtad2

2t2
a

g. Again,
a linearized stability analysis shows that the ground mo
i.e., jw0l, a Gaussian, is a stable stationary solution. S
prisingly, the linearized analysis predicts stability of th
4429
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FIG. 1. Drifting pulse dynamics in a detuned actively mode
locked laser for the situation, where the modulator period
larger than the cavity round-trip time. The displacementA is
caused by the mismatch between the cavity round-trip time a
the modulator period. The displacementB is due to unequal
losses experienced by the front and the back of the pulse
the modulator. The gain saturates to a level, where a poss
stationary pulse does experience no net gain and loss, wh
opens up a net gain window following the pulse. Perturbatio
within that window get amplified while drifting towards the
stationary pulse.

ground mode for all values of the detuning in the par
bolic modulation and gain approximation. This result
even independent from the dynamics of the gain, i.e., t
upper state lifetime of the active medium, as long as the
is enough gain to support the pulse. Only the position
the maximum of the ground mode,

p
2 Dta, depends on

the normalized detuning.
Figure 1 summarizes the results obtained so far. In t

case of detuning, the center of the stationary Gauss
pulse is shifted away from the position of minimum los
of the modulator. Since the net gain and loss with
one round trip in the laser cavity has to be zero for
stationary pulse, there is a long net gain window followin
the pulse in the case of detuning due to the necess
excess gain. Figure 2 shows a few of the resulting lowe
order eigenfunctions for the case of a normalized detuni
D  0 in (a) andD  0.32 in (b). These eigenfunctions
are not orthogonal as a result of the non-normality of th
evolution operator. The non-normality of the operato
fL̂D , L̂

y
Dg , D, increases with detuning. Figure 3 show

the scalar products between the eigenmodes for differ
values of the detuning

Csm, nd 

É
kwmjwnlp

kwmjwml kwnjwnl

É
. (14)

FIG. 2. Lower order eigenmodes of the linearized system f
zero detuning,D  0 (a) and for a detuning,D  0.32 (b).
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The eigenmodes are orthogonal for zero detuning. T
orthogonality vanishes with increased detuning. The
cursion relation (13) tells us that the overlap of the ne
eignemodes with the ground mode is increasing for
creasing detuning. This corresponds to the parallelizat
of the eigenmodes of the linearized problem which lea
to large transient gainjjeL̂Dt jj in a non-normal situation
[2]. Figure 3(d) shows the transient gain for an initia
perturbation from the stationary ground mode calculat
by numerical simulations of the linearized system using
expansion of the linearized system in terms of Fock sta
to the operator̂b. A normalized detuning ofD  3 al-
ready leads to transient gains for perturbations of the or
of 106 within 20 000 round-trips which leads to an eno
mous sensitivity of the system against perturbations.
analytical solution of the linearized system neglecting t
gain saturation shows that the transient gain scales w
the detuning according to exps2D2d. This strong super-
exponential growth with increasing detuning determin
the dynamics completely. Figure 4 shows the surface
the transition to turbulence in the parameter space of
laser, i.e., critical detuningD, the pumping rater  g0yl,
and the ratio between the cavity decay timeTcav  TRyl
and the upper state lifetimetL. In this model, we did not
include the spontaneous emission. The transition to t
bulence always occurs at a normalized detuning of ab
D ø 3.7 which gives a transient gain exps2D2d  1012.
This means that already uncertainties of the numerical
tegration algorithm are amplified to a perturbation as lar
as the stationary state itself. Figure 5 shows the Liapun
coefficient [13] of the dynamics as a function of the no
malized detuning. It clearly indicates that the dynamics

FIG. 3. Scalar products of eigenvectors as a function of t
eigenvector index for the casesD  0 (a), D  1 (b), and
D  3 (c). (d) shows the transient gain as a function
time for these detunings computed from the linearized syst
dynamics.
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FIG. 4. Critical detuning obtained from numerical simulations
as a function of the normalized pumping rate and cavity deca
time divided by the upper-state lifetime. The critical detuning
is almost independent of all laser parameters shown. The me
critical detuning isD ø 3.65.

chaotic above the critical detuning of aboutDc ø 3.7. In
the turbulent regime, the system does not reach a stea
state, because it is nonperiodically interrupted by a ne
pulse created out of the net gain window, see Fig. 1, fo
lowing the pulse for positive detuning. This pulse satu
rates the gain, and the almost formed steady state pulse
destroyed and finally replaced by a new one. The ga
saturation provides the nonlinear feedback mechanis
which strongly perturbs the system again, once a stron
perturbation has grown by the transient linear amplifica
tion mechanism.

The critical detuning becomes smaller if additiona
noise sources, such as the spontaneous emission no
of the laser amplifier and technical noise sources, a
taken into account. However, due to the superexponent
growth, the critical detuning will not depend strongly on
the strength of the noise sources. If the spontaneo
emission noise is included in the simulation, we obtain th

FIG. 5. Liapunov coefficient over normalized detuning.
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same shape for the critical detuning as in Fig. 4; howeve
the critical detuning is lowered to aboutDc ø 2.

In conclusion, we have shown that the detuned active
mode-locked laser exhibits a transition to turbulence sim
lar to fluid flow. The dimensionless parameter which gov
erns that transition has been identified as the normaliz
detuning. The normalized detuning plays the same ro
for the system investigated, as the Reynolds number do
in fluid flow problems. The prerequisites for the transitio
to turbulence are much easier to grasp for the detuned
tively mode-locked laser than in hydrodynamics becau
of the complexity of the Navier-Stokes equations.
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