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Motivation

• Valley degree of freedom of electrons in Silicon

• Valley-orbit coupling can limit spin lifetime and inhibit coherent electron shuffeling

• Measuring the valley splitting gives insights into the quality of the crystal growth

• Circuit QED for determining valley splitting

• Resonator sensitive to avoided crossings due to intra- and inter valley tunneling
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Valley degree of freedom in silicon quantum dots

• Diamond cubic crystal structure
• Six degenerate CB minima (valleys)

Band structure of silicon

First Brillouin zone

from

Wikipedia
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Valley degree of freedom in silicon quantum dots

First Brillouin zone

• Tensile strain of quantum well
• Increased energy of ±𝑋,±𝑌 valleys

• Break of inversion symmetry (confinment)
• Lifted degeneracy of ±𝑍

• Imperfect, soft interfaces and step edges
• Inter-valley tunneling
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Valley degree of freedom in silicon quantum dots

• Hamiltonian of 1-dot subsystem

• Hamiltonian of DQD

Basis:

Basis:

Δ = Δ 𝑒𝑖Φvalley coupling

𝑡c = dot-dot tunneling
𝜖 = dot-dot detuning

• After diagonalizing the single-dot part

Inter-valley tunneling

Basis:

Intra-valley tunneling
Valley phase difference, because of 

valley orbit coupling

Δ = Δ 𝑥 ; Δ𝑖 ≠ Δ𝑗
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Experimental Setup

• Half wave CPW resonator 
coupled to TQD, 𝑓𝑟 = 6.76 GHz
𝜅/2𝜋 = 1.5 MHz

• 3 overlapping Al gate layers
separated by native Al2O3

• CP gate wraps around dot 3 to
enhance dot-resonator coupling
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Dot 3 empty Dot 1 filled to extend leadDot 3 empty

• Read-out of resonator that is sensitive to charge transitions
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Tuning towards last electron in TQD

TQD charge-stability diagramDot 3 empty Dot 1 filled to extend leadDot 3 empty

• Read-out of resonator that is sensitive to charge transitions



Operation at last electron in the TQD
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Operation point in transformed gate axes
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• Sweep barrier versus detuning
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• Sweep barrier versus detuning

• Resonator sensitive to curvature at avoided

crosings

• Largest resonator response when transition
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Spectroscopic measurement of the valley states
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• Sweep barrier versus detuning

• Resonator sensitive to curvature at avoided

crosings

• Largest resonator response when transition

frequencies are close to resonator frequency

• Operation temperature 𝑇𝑒 = 350 mK enables

sensing of higher lying transitions

• Intra and inter-valley crossings are detected

• Horizontal positioning of archs due to 𝐸𝑉,𝑖
• Vertical spacing of archs sugests 𝑡𝑖𝑗

′ = 𝑡𝑖𝑗
′ (𝜖)
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Quantitative data analysis
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• Analysis of traces of fixed 𝒕𝟏𝟐 (𝑽𝑩)
• Numerical diagonalisation of Hamiltonian for each 𝜖12
• Feed resulting energies into cavity input-output theory

• Add linear dependence 𝑡12 = 𝑡12 𝜖 = 0 + 𝑎12𝜖12 to

account for asymmetry

• Independently measure charge decoherence rate 𝛾12
• Fit parameters: 

- Valley splittings 𝐸𝑉,𝑖 - Intra valley-tunnelings 𝑡12 𝜖12 = 0

- Valley phase differences 𝛿Φ12 - Asymmetry 𝑎12
- Lever arms 𝛼𝑖𝑗 - Charge-cavity coupling rate 𝑔12
- Inhomogeneous broadening 𝜎12
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• Linear dependence between barrier gate and tunnel couplings

• Consistent extraction of valley splittings

(1,0,0)-(0,1,0): 𝐸𝑉1 = 63 μeV, 𝐸𝑉2 = 53 μeV; (0,1,0)-(0,0,1): 𝐸𝑉2 = 50 μeV, 𝐸𝑉2 = 38 μeV
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-> Large variations of valley phase 𝛿𝜑𝑖𝑗 = 2 arctan(|𝑡𝑖𝑗/𝑡𝑖𝑗
′ |) between

different dots (length scale 200 nm)
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• Circuit QED as sensitive measure for curvature in quantum dot energy levels

• Spectroscopical measurement of valley-splittings

• Consistent with theory, inter- and intravalley splitting scale linearly

• Observation of significant variations of the valley phase difference over approximately 200 nm

• Improvement of Si/SiGe interface is needed



Thank you
for your attention.
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