

Probing the Variation of the Intervalley Tunnel Coupling in a Silicon Triple Quantum Dot

F. Borjans, X. Zhang, X. Mi, G. Cheng, N. Yao, C.A.C. Jackson, L.F. Edge and J.R. Petta (PRX Quantum 2, 2021)

Journal Club of the NCCR spin on May 16 2022

JH Ungerer

Motivation

- Valley degree of freedom of electrons in Silicon
 - Valley-orbit coupling can limit spin lifetime and inhibit coherent electron shuffeling

Motivation

- Valley degree of freedom of electrons in Silicon
 - Valley-orbit coupling can limit spin lifetime and inhibit coherent electron shuffeling
 - Measuring the valley splitting gives insights into the quality of the crystal growth

Motivation

- Valley degree of freedom of electrons in Silicon
 - Valley-orbit coupling can limit spin lifetime and inhibit coherent electron shuffeling
 - Measuring the valley splitting gives insights into the quality of the crystal growth
- Circuit QED for determining valley splitting
 - Resonator sensitive to avoided crossings due to intra- and inter valley tunneling

- Diamond cubic crystal structure
 Six degenerate CB minima (valleys)

- Tensile strain of quantum well
 Increased energy of ±X, ±Y valleys

- Tensile strain of quantum well
 Increased energy of ±X, ±Y valleys
 Break of inversion symmetry (confinment)
 Lifted degeneracy of ±Z

- Tensile strain of quantum well
 Increased energy of ±X, ±Y valleys
 Break of inversion symmetry (confinment)
 Lifted degeneracy of ±Z
- Imperfect, soft interfaces and step edges ٠
 - Inter-valley tunneling

Hamiltonian of 1-dot subsystem

$$H_{V,i} = \begin{pmatrix} 0 & \Delta_i \\ \Delta_i^* & 0 \end{pmatrix}$$

Basis: $\{|i, +z\rangle, |i, -z\rangle\}$ $\Delta = |\Delta|e^{i\Phi}$ valley coupling

Hamiltonian of 1-dot subsystem

 $H_{V,i} = \begin{pmatrix} 0 & \Delta_i \\ \Delta_i^* & 0 \end{pmatrix}$

Hamiltonian of DQD

$$H_{ij}(\epsilon_{ij}) = \begin{pmatrix} \frac{\epsilon_{ij}}{2} & \Delta_i & t_c & 0\\ \Delta_i^* & \frac{\epsilon_{ij}}{2} & 0 & t_c\\ t_c & 0 & -\frac{\epsilon_{ij}}{2} & \Delta_j\\ 0 & t_c & \Delta_j^* & -\frac{\epsilon_{ij}}{2} \end{pmatrix}$$

(C Basis: $\{|i, +z\rangle, |i, -z\rangle\}$ $\Delta = |\Delta|e^{i\Phi}$ valley coupling $\delta \phi = 0$ 100 *E* (μeV) Basis: $\{|i, +z\rangle, |i, -z\rangle, |j, +z\rangle, |j, -z\rangle\}$ 0 ۷, -100 $t_c = dot-dot tunneling$ -200 - 100100 200 0 $\epsilon = dot - dot detuning$ ϵ_{12} (µeV)

 Hamiltonian of 1-dot subsystem $H_{V,i} = \begin{pmatrix} 0 & \Delta_i \\ \Delta_i^* & 0 \end{pmatrix} \qquad \begin{array}{l} \text{Basis:} \\ \{|i, +z\rangle, |i, -z\rangle\} \\ \Delta = |\Delta|e^{i\Phi} \text{valley coupling} \\ Si_{0,7}\text{Ge}_{0,3} \end{array}$ Hamiltonian of DQD 100 $H_{ij}(\epsilon_{ij}) = \begin{pmatrix} \frac{\epsilon_{ij}}{2} & \Delta_i & t_c & 0\\ \Delta_i^* & \frac{\epsilon_{ij}}{2} & 0 & t_c\\ t_c & 0 & -\frac{\epsilon_{ij}}{2} & \Delta_j\\ 0 & t_c & \Delta_j^* & -\frac{\epsilon_{ij}}{2} \end{pmatrix} \qquad \begin{array}{ll} \text{Basis:} \\ \{|i, +z\rangle, |i, -z\rangle, |j, +z\rangle, |j, -z\rangle\} \\ I_{ij} & I_{ij} \\ I_{$ After diagonalizing the single-dot part

 $\delta \phi = 0$

00 0 1 ϵ_{12} (μ eV)

-200 - 100

12,7

200

100

$$H'_{ij}(\epsilon_{ij}) = \begin{pmatrix} \frac{\epsilon_{ij}}{2} + E_{\mathrm{VS},i} & 0 & t_{ij} & t'_{ij} \\ 0 & \frac{\epsilon_{ij}}{2} & t'_{ij} & t_{ij} \\ t^*_{ij} & t^{**}_{ij} & -\frac{\epsilon_{ij}}{2} + E_{\mathrm{VS},j} & 0 \\ t^{**}_{ij} & t^*_{ij} & 0 & -\frac{\epsilon_{ij}}{2} \end{pmatrix}$$
Basis:
$$\{|i, +\rangle, |i, -\rangle, |j, +\rangle, |j, -\rangle\}$$
Intra-valley tunneling
$$t_{ij} = (1/2)t_c(1 + e^{-i\delta\phi_{ij}})$$
Inter-valley tunneling
$$t'_{ii} = (1/2)t_c(1 - e^{-i\delta\phi_{ij}})$$

Jann Hinnerk Ungerer, May 16, 2022

B1 B2 Hamiltonian of 1-dot subsystem B1 B2 B3 Basis: $H_{V,i} = \begin{pmatrix} 0 & \Delta_i \\ \Delta_i^* & 0 \end{pmatrix} \qquad \{ |i, +z\rangle, |i, -z\rangle \}$ Si $\Delta = |\Delta| e^{i\Phi}$ valley coupling SigraGeore Hamiltonian of DQD $\delta \phi = \pi/2$ $\delta \phi = 0$ 100 $H_{ij}(\epsilon_{ij}) = \begin{pmatrix} \frac{\epsilon_{ij}}{2} & \Delta_i & t_c & 0\\ \Delta_i^* & \frac{\epsilon_{ij}}{2} & 0 & t_c\\ t_c & 0 & -\frac{\epsilon_{ij}}{2} & \Delta_j\\ 0 & t_c & \Delta_j^* & -\frac{\epsilon_{ij}}{2} \end{pmatrix} \qquad \begin{array}{ll} \text{Basis:} \\ \{|i, +z\rangle, |i, -z\rangle, |j, +z\rangle, |j, -z\rangle\} \\ t_c = \text{dot-dot tunneling} \\ \epsilon = \text{dot-dot detuning} \\ -20 \end{array}$ (2,+)12,7 0 -200 - 100100 100 200 200-200-100 ϵ_{12} (µeV) ϵ_{12} (µeV) After diagonalizing the single-dot part Basis: $H'_{ij}(\epsilon_{ij}) = \begin{pmatrix} \frac{\epsilon_{ij}}{2} + E_{\mathrm{VS},i} & 0 & t_{ij} & t'_{ij} \\ 0 & \frac{\epsilon_{ij}}{2} & t'_{ij} & t_{ij} \\ t^*_{ij} & t^*_{ij} & -\frac{\epsilon_{ij}}{2} + E_{\mathrm{VS},j} & 0 \\ t^{**}_{ij} & t^*_{ij} & 0 & -\frac{\epsilon_{ij}}{2} \end{pmatrix} \begin{bmatrix} |i,+\rangle, |i,-\rangle, |j,+\rangle, |j,-\rangle \\ \text{Intra-valley tunneling} \\ t_{ij} = (1/2)t_c(1+e^{-i\delta\phi_{ij}}) \\ \text{Inter-valley tunneling} \\ \text{Inter-valley tunneling} \end{bmatrix}$ Valley phase difference, because of valley orbit coupling

 $t'_{ii} = (1/2)t_c(1 \cdot t_{ii})$

$$\Delta = \Delta(x); \ \Delta_i \neq \Delta j$$

Experimental Setup

• Half wave CPW resonator coupled to TQD, $f_r = 6.76$ GHz $\kappa/2\pi = 1.5$ MHz

Experimental Setup

- Half wave CPW resonator coupled to TQD, $f_r = 6.76$ GHz $\kappa/2\pi = 1.5$ MHz
- 3 overlapping AI gate layers separated by native AI₂O₃

Experimental Setup

- Half wave CPW resonator coupled to TQD, $f_r = 6.76$ GHz $\kappa/2\pi = 1.5$ MHz
- 3 overlapping Al gate layers separated by native Al₂O₃
- CP gate wraps around dot 3 to enhance dot-resonator coupling

Tuning towards last electron in TQD

• Read-out of resonator that is sensitive to charge transitions

Tuning towards last electron in TQD

• Read-out of resonator that is sensitive to charge transitions

Jann Hinnerk Ungerer, May 16, 2022

Operation at last electron in the TQD

• Sweep barrier versus detuning

- Sweep barrier versus detuning
- Resonator sensitive to curvature at avoided crosings

- Sweep barrier versus detuning
- Resonator sensitive to curvature at avoided crosings
- Largest resonator response when transition frequencies are close to resonator frequency

- Sweep barrier versus detuning
- Resonator sensitive to curvature at avoided crosings
- Largest resonator response when transition frequencies are close to resonator frequency
- Operation temperature $T_e = 350$ mK enables sensing of higher lying transitions

Sweep barrier versus detuning

Si

- Resonator sensitive to curvature at avoided crosings
- Largest resonator response when transition frequencies are close to resonator frequency
- Operation temperature $T_e = 350$ mK enables sensing of higher lying transitions
- Intra and inter-valley crossings are detected

• Sweep barrier versus detuning

Si

Si_{0.7}Ge_{0.3}

- Resonator sensitive to curvature at avoided crosings
- Largest resonator response when transition frequencies are close to resonator frequency
- Operation temperature $T_e = 350$ mK enables sensing of higher lying transitions
- Intra and inter-valley crossings are detected
- Horizontal positioning of archs due to $E_{V,i}$

• Sweep barrier versus detuning

Si

Si_{0.7}Ge_{0.3}

- Resonator sensitive to curvature at avoided crosings
- Largest resonator response when transition frequencies are close to resonator frequency
- Operation temperature $T_e = 350$ mK enables sensing of higher lying transitions
- Intra and inter-valley crossings are detected
- Horizontal positioning of archs due to $E_{V,i}$
- Vertical spacing of archs suggests $t'_{ij} = t'_{ij}(\epsilon)$

Quantitative data analysis

Quantitative data analysis

- Analysis of traces of fixed t_{12} (V_B)
 - Numerical diagonalisation of Hamiltonian for each ϵ_{12}
 - Feed resulting energies into cavity input-output theory
 - Add linear dependence $t_{12} = t_{12}(\epsilon = 0) + a_{12}\epsilon_{12}$ to account for asymmetry
 - Independently measure charge decoherence rate γ_{12}
 - Fit parameters:
 - Valley splittings $E_{V,i}$ Intra valley-tunnelings $t_{12}(\epsilon_{12} = 0)$
 - Valley phase differences $\delta \Phi_{12}$ Asymmetry a_{12}
 - Lever arms α_{ij} Charge-cavity coupling rate g_{12}
 - Inhomogeneous broadening σ_{12}

• Consistent extraction of valley splittings (1,0,0)-(0,1,0): $E_{V1} = 63 \ \mu eV$, $E_{V2} = 53 \ \mu eV$; (0,1,0)-(0,0,1): $E_{V2} = 50 \ \mu eV$, $E_{V2} = 38 \ \mu eV$

• Circuit QED as sensitive measure for curvature in quantum dot energy levels

- Circuit QED as sensitive measure for curvature in quantum dot energy levels
- Spectroscopical measurement of valley-splittings

- Circuit QED as sensitive measure for curvature in quantum dot energy levels
- Spectroscopical measurement of valley-splittings
- Consistent with theory, inter- and intravalley splitting scale linearly

- Circuit QED as sensitive measure for curvature in quantum dot energy levels
- Spectroscopical measurement of valley-splittings
- Consistent with theory, inter- and intravalley splitting scale linearly
- Observation of significant variations of the valley phase difference over approximately 200 nm
 - Improvement of Si/SiGe interface is needed

Thank you for your attention.