An electrically-driven single-atom 'flip-flop' qubit IBM-Uni. Basel Journal Club

Eoin Kelly 04.04.2022

An electrically-driven single-atom 'flip-flop' qubit

Rostyslav Savytskyy,^{1,2,*} Tim Botzem,^{1,2,*} Irene Fernandez de Fuentes,^{1,2} Benjamin Joecker,^{1,2} Fay E. Hudson,^{1,2} Kohei M. Itoh,³ Alexander M. Jakob,^{4,2} Alexander M. Jakob,^{4,2} Brett C. Johnson,^{4,2} David N. Jamieson,^{4,2} Andrew S. Dzurak,^{1,2} and Andrea Morello^{1,2,†} ¹School of Electrical Engineering & Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia ²Centre for Quantum Computation & Communication Technology ³School of Fundamental Science and Technology, Keio University, Kohoku-ku, Yokohama, Japan ⁴School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia (Dated: February 10, 2022)

- Quantum information encoded in electron-nuclear states of P donor in Si
- Qubit controlled by local electric fields
- Electrical drive mediated by modulating the electron-nuclear hyperfine coupling

Flip-flop Qubit

$$H = \gamma_e B_0 S_z + \gamma_n B_0 I_z + A \boldsymbol{S} \cdot \boldsymbol{I}$$

- Nucleus: I = $\frac{1}{2}$, $\gamma_n = 17.23$ MHz/T basis states $|\Uparrow\rangle$, $|\Downarrow\rangle$
- Electron: $S = \frac{1}{2}$, $\gamma_e = 27.97 \text{ GHz/T}$ basis states $|\uparrow\rangle$, $|\downarrow\rangle$
- At $B_0 \gg A$: eigenstates are tensor-product states $|\downarrow\uparrow\uparrow\rangle, |\downarrow\downarrow\downarrow\rangle, |\uparrow\uparrow\uparrow\rangle, |\uparrow\downarrow\downarrow\rangle$
- Fermi contact hyperfine interaction: eigenstates are $|S\rangle = (|\downarrow \uparrow\uparrow\rangle |\uparrow\uparrow \downarrow\rangle)/\sqrt{2}$ and $|T_0\rangle = (|\downarrow \uparrow\uparrow\rangle + |\uparrow\downarrow \downarrow\rangle)/\sqrt{2}$

Flip-flop Qubit

 $H = (\gamma_+) B_0 \sigma_z + A \sigma_x$

- Flip-flop subspace: $|0\rangle = |\downarrow\uparrow\uparrow\rangle$, $|1\rangle = |\uparrow\downarrow\downarrow\rangle$ (z-operator eigenstates
- $|S\rangle = (|\downarrow \uparrow\uparrow\rangle |\uparrow\downarrow \downarrow\rangle)/\sqrt{2}$ and $|T_0\rangle = (|\downarrow \uparrow\uparrow\rangle + |\uparrow\downarrow\downarrow\rangle)/\sqrt{2}$ are x-operator eigenstates
- Flip-flop resonance frequency:

$$\epsilon_{eff} = \sqrt{(\gamma_+ B_0)^2 + A(E_{dc})^2}$$

• Modulating hyperfine interaction by electric field drives qubit transitions

Device

- MOS device with ion-implanted ${}^{31}P$ donor
- Fast Donor (FD) gate for EDSR
- SET for electron spin readout (spin-dependent tunnelling)
- Microwave antenna for ESR and NMR

Resonant Transitions

- ESR1 and ESR2 separated by A = 114.1 MHz close to 117.53 MHz found in bulk (bulk-like donor)
- Flip-flop transition: microwave tone applied to FD, then nuclear spin orientation is measured
- Nuclear spin readout:
 - adiabatic frequency sweep around ESR1 (adiabatic inversion) aESR1
 - Readout electron spin
 - If $|\uparrow\rangle$, then nuclear spin was $|\downarrow\rangle$
- High probability P_{flip} of the nuclear state changing from one shot to the next -> indicates flip-flop resonance being driven

6

Initialization

- Electron-Nuclear Double Resonance (ENDOR) pulse sequence to initialize in the flip-flop ground state |↓↑⟩
- aESR2 pulse followed by aNMR1 pulse
- If system is in |↓↑⟩:
 - aESR2 flips electron spin to $|\uparrow \Uparrow \rangle$
 - aNMR pulse is off-resonant and electron readout will initialize back to $|{\downarrow}{\Uparrow}\rangle$
- If system is in $|\downarrow\downarrow\downarrow\rangle$:
 - aESR2 pulse is off-resonant
 - aNMR1 pulse will flip the nucleus to $|\downarrow \Uparrow \rangle$

Coherent Electrical Control

- ENDOR initialization -> EDSR ->flipflop readout
- Flip flop readout:
 - readout electron spin
 - reload electron onto donor
 - perform nuclear spin readout

Rabi Frequency, Hyperfine Modulation

 Maximum Rabi frequency of 118.5 kHz (5x typical NMR drive) – limited by bulk-like donor state (small dipole)

$$f_{rabi} = \left(\frac{\partial A(E)}{2\partial E}\right) E_{ac}$$

- $\frac{\partial A}{\partial V_{FD}} = 512 \text{ kHz/V}$ with positive slope expectation that this should be negative
- Limited control of hyperfine interaction due to charging of nearby donors

Relaxation

- *T*_{1*ff*} found by saturating the ESR1 transition
 - Start from $\left|\downarrow\Downarrow\right\rangle$
 - Calibrated slow frequency inversion sweep used to create $a|\downarrow\downarrow\downarrow\rangle + b|\uparrow\uparrow\downarrow\rangle$ - $|a|^2 = |b|^2 = 0.5$
- aESR1 applied every 5 s to counteract T_{1e} process
- Measure leakage out of flip-flop subspace
- *T*_{1*ff*} = 173 s

Decoherence

- Both T_{2ff}^* and T_{2ff}^H measured
- Decoherence Mechanisms:
 - EDSR pulse induced resonance shift (poorly understood)
 - Residual ²⁹Si in substrate (splitting of flipflop ESR resonances – coupling to ^{29}Si nuclei)

С

Single Qubit Gate Fidelities

- Average $F_{1Q} = 97.5\% 98.5\%$ from Gate Set Tomography
- $F_{1Q} = 98.4\%$ from Randomised Benchmarking

Conclusion

- This time:
 - large gate voltage swing necessary to move the electron away from the donor under study would unsettle the charge state of nearby donors (limits Rabi frequency)
- Next time:
 - large dipole regime where Rabi frequency would be maximum (30 ns for $\frac{\pi}{2}$ rotation)
 - deterministic single-ion implantation will help
- Future:
 - Different donors, e.g. ${}^{123}Sb$ with I > 1/2 for all-electrical control (electric quadrupole moment enables nuclear electric resonance)

Thanks for you attention!