Designs for a two-dimensional Si quantum dot array with spin qubit addressability

Masahiro Tadokoro^{1,2}, Takashi Nakajima², Takashi Kobayashi³, Kenta Takeda², Akito Noiri², Kaito Tomari¹, Jun Yoneda⁴, Seigo Tarucha^{2,3}, and Tetsuo Kodera^{1,*}

1. Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan

2. Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan

3. RIKEN Center for Quantum Computing, RIKEN, Wako-shi, Saitama, 351-0198, Japan

4. Tokyo Tech Academy for Super Smart Society, Tokyo Institute of Technology, Meguroku, Tokyo 152-8552, Japan

Presenter: Michele Aldeghi

8 November 2021

Abstract

Electron spins in Si are an attractive platform for quantum computation, backed with their scalability and fast, high-fidelity quantum logic gates. Despite the importance of two-dimensional integration with efficient connectivity between qubits for medium- to large-scale quantum computation, however, a practical device design that guarantees qubit addressability is yet to be seen. Here, we propose a practical $3 \times$ 3 quantum dot device design and a larger-scale design as a longer-term target. The design goal is to realize qubit connectivity to the four nearest neighbors while ensuring addressability. We show that a 3×3 quantum dot array can execute four-qubit Grover's algorithm more efficiently than the one-dimensional counterpart. To scale up the two-dimensional array beyond 3×3 , we propose a novel structure with ferromagnetic gate electrodes. Our results showcase the possibility of medium-sized quantum processors in Si with fast quantum logic gates and long coherence times.

EDSR by micromagnets: requirements

Two requirements:

Stray field gradient •

Electric field •

EDSR by micromagnets: goals

Two goals:

• High driving field

• Single qubit addressability

1) Overcome addressability problem in two dimensional arrays

1) Overcome addressability problem in two dimensional arrays

Overcome addressability problem in 2x2 arrays

Old design

Yoneda et al., Appl. Phys. Express 8, 084401 (2015)

Device setup

- ²⁸Si/SiGe heterostructure
- Spin readout via gatebased sensing
- Initialization via relaxation and adiabatic passage
- Manipulation: EDSR

Table 1. Overlapping-layer gate characteristics.							
Layer index	Gate name	Gate color	Gate width (nm)	Gate height (nm)			
1	$\begin{array}{c} B_{11\text{-}12},B_{12\text{-}13}\\ B_{r1\text{-}11},B_{r2\text{-}13}\end{array}$	Blue	50	15			
2	P_{11}, P_{12}	Red	90	25			
3	$B_{12 \cdot 22}, B_{21 \cdot 22}$	Yellow	60	40			
4	P_{22}	Magenta	70	60			

Performance

- f_{Rabi} = 6.8 14 MHz, assuming wavefunction displacement of 0.43 nm
- Minimum $\Delta B = 6$ mT, which corresponds to $\Delta f = 160$ MHz

- Qubit 143 nm below the magnets
- External field: NA, assumed fully magnetized magnets
- Displacement: along y

Linear vs 2D array performance

Implementation of a4qubit Grover's search algorithm

- 2d: 15 two-qubit gates (2 SWAP)
- Linear: 18 two-qubit gates (5 SWAP)

1) Overcome addressability problem in two dimensional arrays

1) Overcome addressability problem in two dimensional arrays

Find a scalable path towards thousands of qubits

a 1.5 µm 0.9 µm 1.7 µm 0.2 µm 0.425 µm ++ 0.1 µm 0.15 µm 0.6 µm 0.15 um 0.425 µm 1.7 µm B_{ext} b_{trans} (mT/nm) $B_{\rm long}$ (mT) b С 1.5 200 1 100 0 0.5 -100 0 -200 -0.5 -300 -1 -400 -1.5 -500

Old design

New idea

Separate the magnet:

- General magnet for addressability
- One magnet for each qubit for high driving gradient

Solution: ferromagnetic gates

- Plunger and barrier gates are magnetic
- Created as vias
- Size QD=120x120 nm²

Barrier gate Data qubits Ancilla qubits

Performance

- f_{Rabi} = 39 MHz, assuming wavefunction displacement of 0.43 nm
- Δf > 100 MHz
- QD footprint: 120x120 nm²

- Qubit position: NA
- External field: NA, assumed fully magnetized magnets
- Displacement: along y

V

Issues

- Vias fan-out and connection
- Magnetization pattern uniformity

У

Comparison: global magnetic field

- Deliver of magnetic field trough MW dielectric resonator
- Brought in resonance by local voltage (g-factor modulation)
- Demonstrated coherent Rabi oscillation

Kane, B. E. Nature 393, 133– 137 (1998).

Vahapoglu, E., et al., Science Advances, 7(33), (2021)

Vahapoglu, E., et al., arXiv:2107.14622 (2021) Issues

- f_{Rabi} = < 2 MHz (saturation with increasing MW power)
- Unwanted additional drive
- Low quality factor for the resonator

Vahapoglu, E., et al., arXiv:2107.14622 (2021)

Comparison

Tadokoro et al. (arXiv:2106.11124)

- f_{Rabi} = 39 MHz
- Addressability via magnetic gradient
- Simulation

Vahapoglu et al. (arXiv:2107.1462)

- f_{Rabi} = 1.5 MHz
- Addressability tunable by voltage
- Experiment

Conclusion

 Proposal for EDSR drive up to thousand qubits

 Based on splitting magnet role between driving and addressability

		۱ I	
		-	
			/
		-	
		-	