#### **On-demand electric control of spin qubits**

Will Gilbert,<sup>1,\*</sup> Tuomo Tanttu,<sup>1,\*</sup> Wee Han Lim,<sup>1</sup> MengKe Feng,<sup>1</sup> Jonathan Y. Huang,<sup>1</sup> Jesus D.
Cifuentes,<sup>1</sup> Santiago Serrano,<sup>1</sup> Philip Y. Mai,<sup>1</sup> Ross C. C. Leon,<sup>1</sup> Christopher C. Escott,<sup>1</sup> Kohei M.
Itoh,<sup>2</sup> Nikolay V. Abrosimov,<sup>3</sup> Hans-Joachim Pohl,<sup>4</sup> Michael L. W. Thewalt,<sup>5</sup> Fay E. Hudson,<sup>1</sup>
Andrea Morello,<sup>1</sup> Arne Laucht,<sup>1</sup> Chih Hwan Yang,<sup>1</sup> Andre Saraiva,<sup>1</sup> and Andrew S. Dzurak<sup>1</sup>

 <sup>1</sup>School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW 2052, Australia
 <sup>2</sup>School of Fundamental Science and Technology, Keio University, Yokohama, Japan <sup>3</sup>Leibniz-Institut für Kristallzüchtung, 12489 Berlin, Germany <sup>4</sup>VITCON Projectconsult GmbH, 07745 Jena, Germany
 <sup>5</sup>Department of Physics, Simon Fraser University, British Columbia V5A 1S6, Canada (Dated: January 19, 2022)

#### arXiv:2201.06679

Spin Journal Club 14.02.2022

# Idea: Spin-orbit switch for electrons in Si

- Electrons in Silicon: Relatively weak spin-orbit interaction without micromagnet
- EDSR via micromagnet or ESR via on-chip transmission line both pose scaling challenges
- SOI effects in Si QDs may become significant if electron is allowed to move between orbital configurations
- In this paper, such sweetspots are accessed via gate voltages to enable switchable spin-orbit interaction:



# Device layout

- Enriched <sup>28</sup>Si MOS devices with SET charge sensor and (optional) coplanar waveguide antenna
- Experiments carried out with different material stacks (not specified; most of the groups' recent publications have Al gates, sometimes Pd gates; Aluminum oxide as ALD layer)





CB: Lateral confinement barriers RES: Reservoir gate

### Excited state spectroscopy

#### Black dashed line: Points with maximum SOI driving



4

E<sub>B</sub>

EΔ

(0,4)

0.05

**P**1

|A)

0

iv. Return to idle

10

 $(E_{\rm A} - E_{\rm B})/\alpha_{\rm rel}$ 

(mV)

# Pulsed electron spin-orbital spectroscopy (PESOS)

- Protocol: Apply microwave pulse of fixed duration/power as function of  $f_{mw}$  and gate voltages
- PESOS maps for spins initialized&measured using parity readout (A. Seedhouse et al., PRX Quantum 2021):



- Maps for 4 devices differing in operation modes, material stacks, MW excitation strategies, 2 different fridges
- Hybridization points: Interference fringes due to enhancement of EDSR efficiency

### Fit to theoretical model (I)

• From PESOS maps, one can extract vertical line traces of  $P_{even}$  in dependence of  $f_{mw}$ :

$$P_{\text{even}} = \frac{A f_{\text{Rabi}}^2 \left[ 1 - \cos \left( \tau \sqrt{f_{\text{Rabi}}^2 + (f_{\text{mw}} - f_0)^2} \right) \right]}{f_{\text{Rabi}}^2 + (f_{\text{mw}} - f_0)^2} + \delta A$$
(1)



A: oscillation amplitude,  $\tau$ : total time of driving pulse,  $\delta A$ : Amplitude offset of oscillations

- From fit to Rabi equation (1), Rabi frequency  $f_{\text{Rabi}}$  and qubit frequency  $f_0$  can be extracted
- Rabi equation for each voltage value can be used to simulate PESOS maps:

Simulation of PESOS map for A:

 $f_{\rm Rabi}$  from simulation vs. gates:

Measured  $f_{\text{Rabi}}$  vs.  $\Delta V_{\text{P}}$ 



# Fit to theoretical model (II)

•  $f_{\text{Rabi}}$  and  $f_0$  as function of gate voltage are then target fit values for 4-level Hamiltonian:



- Hybridization gap energy compares differently to spin splitting energy for each of these configurations
- Hybridization may involve states with e.g. different valley configurations, in-plane orbitals, ...

# Enhancement of Rabi frequency

- Device D: Driven all-electrically, with strongest observed effects of orbital degeneracy on spins
- At 400 mT: Largest enhancement of  $f_{\text{Rabi}}$  across all experiments
- $f_{\text{Rabi}}$  decreases to below 125 kHz for V<sub>J</sub> > 1.65 V





### Impact on coherence

- At 700 mT: Qubit states more convoluted, tend to leak into undesired excited states
- Rabi speed-up more modest, but qubit frequency less affected by electric field fluctuations, leading to higher control fidelity
- Echo experiment: Idle wait times are offset by  $\Delta V_I$
- $Q = 2 \cdot \Omega_{Rabi} / \Gamma_{2,Rabi}$

Clifford gate set randomized benchmarking ( $\Delta V_{\rm P}$  = 13.6 mV):





 $\Delta V_{\rm J} \rightarrow 0$ : Stark shift  $df/dV_{\rm J}$  becomes very large

Gate set tomography ( $\Delta V_{\rm P}$  = 13.6 mV):



9

### Summary

- Orbital hybridization effect on spin dynamics is shown for 4 different devices
- Excited state spectroscopy guides search for hybridization points
- PESOS maps show the change in spin dynamics at these points
- All-electrically driven device:
  - $B_0$  = 0.4 T:  $f_{Rabi}$  tunable from <125 kHz to 81 MHz
  - $B_0$ = 0.7 T:  $T_{2,Hahn} \approx 50 \mu s$ ; elementary gate fidelity of 99  $\pm$  0.3 %
- Open questions:
  - What is the dominant source of control errors?
  - How regularly does the EDSR speed-up occur?