An addressable quantum dot qubit with fault-tolerant control-fidelity

M. Veldhorst¹*, J. C. C. Hwang¹, C. H. Yang¹, A. W. Leenstra², B. de Ronde², J. P. Dehollain¹, J. T. Muhonen¹, F. E. Hudson¹, K. M. Itoh³, A. Morello¹ and A. S. Dzurak¹*

1 = University of New South Wales, Sydney, Austrailia

2 = University of Twente, Netherlands

3 = Keio Univeristy, Japan

Contents

- electron spin qubit in ²⁸Si (MOS)
- ESR stripline
- long coherence time (T₂ = 28ms)
- high control fidelity
- valley splitting

QD Device

- QD coupled to 1
 reservoir
- readout via SET (with feedback-loop)
- T = 50mK
- 3 layer Al-AlO gate stack on ²⁸Si

RF and spin readout

- spin-selective tunnelling to reservoir
- single-shot spin readout
- AC B-field by AC current through transmission line
- B = 1.4T, g ~2, f_{MW}=39GHz

Time

Rabi

- $T_2^{Rabi} \sim 380 \mu s$
- $f_{Rabi} \propto \sqrt{Pwr}$

c 1.0

0.6

0.4

0.0

f,

• t_π= 1,8μs

Ramsey, Hahn and CPMG

- $T_2^* = 120 \mu s$
- T₂^H = 1.2ms
- $T_2^{CPMG} = 28ms$
- different

 exponents ->
 different noise
 spectra

• 10⁵ operations before decay

Linewidth

- $T_2^* = 120\mu s \rightarrow thin linewidth v$ = 2.6kHz
- agrees with linewidth measurement at Pwr=-20dbm (no more power broadening)
- electrically tunable g-factor
- → idea: high qubit addressability in array

Randomized benchmarking

- goal: calculate gate error
- apply random series of (interleaved) gates, then recover
- get gate fidelity from sequence fidelity decay (visibility does not matter)
- fit $f = A^* \exp(-(b^*m)^{\alpha})$, $F_c = 1 b$
- single gate fidelity: $F_s = 1-b/(2*1.875)$
- \rightarrow F_c > 99% "fault-tolerant"

More about RBM: J.T. Muhonen et al., Condensed Matter 27 (2015)

Valley splitting

- $E_z = E_v$ is relaxation sweet spot
- valley splitting $\propto F_Z$ and agrees with previous device
- qubit can be operated in $E_z > E_v$ or $E_z < E_v$ regime

Conclusion

- electrons in ²⁸Si \rightarrow very long coherence T₂* = 120µs
- CPMG improves coherence by factor 200
- address qubit electrically with tunable g-factor
- fault-tolerant gate fidelity > 99%