MARCH $26^{\text {th }}, 2020$

$$
\begin{gathered}
\text { VIRTUAL }- \text { SPIN } \\
\text { MEETING }
\end{gathered}
$$

\square

\入入入入，－－－• • 1 1 1 1 1 1 へ

Di Vincenso Giteria
1 Inilialize \oiint Prepare
$21 \& 2$ Qubit Operations

3 Long Cocherence Tires z

$$
\overbrace{}^{2^{2}} \text { chill }
$$

4 Readout

Charges in Dots

Describe Levels /w CI. Model

- Desuibe Coulomb Interaction by single C

$$
C=C_{S}+C_{D}+C_{G}=\text { const. }
$$

- Single particle energy -level spectrum is indep of \# of $e^{-} . V(N)=U\left(N, C_{i} \cdot V_{i}\right)+\sum_{n} E_{n}(B)$

$$
\mu(N)=U(N)-U(N-1) \quad E_{N}(P . I . B)
$$

F Dependence of $U(N), \mu(N)$ on V_{G} is the same $\forall N$ \rightarrow LADDER convenient
-

$$
\begin{aligned}
& E_{\text {add }}(N)=\mu(N+1)-\mu(N)=E_{C}+\Delta E \\
& \text { changing orice } \\
& \text { (el.static) of (sostimeselt) }
\end{aligned}
$$

Coulomb Blockade

- Transport only possible, when level with in bias window

High Bias

- can involve transport of excited states
- further bias, Vso exceeds $E_{\text {add }} \rightarrow$ double e^{-} tunneling

Level Transitions
total of system
a) $E S(N+1)$
b)

we probe this
b)
$G S(N) \leftrightarrow$ $\mathrm{ES}(N+1)$

physical levels
energy transitions

$$
\text { Fig. } 5
$$

capoly $\pi / 2$
pulse
ノ

Introducing B-gield

- Leeman splitting $E_{z}=S_{z} g \mu_{B} B,(\hat{s}$, perlis $)$
- Coulomb-int. leads to energy difference (exchange energy) between states IW sym \& anti-sym orbital WFs. since $\psi=\phi_{\text {orb }} \cdot Y_{\text {spine }}$, anti sym \Rightarrow Sym of orb is linked to sym os spin!
- for: $g>0,4$ lifts energy by $\frac{1}{2}$ $N \rightarrow N+1 \quad \frac{1}{2}$ lamas - $11-$

$$
\Delta E_{z}=2\left|E_{z}\right|=g \mu_{B} B
$$

One e^{-}spinstates in a dot
$\mu_{0 \leftrightarrow \uparrow, 0}=E_{\uparrow, 0}$,

$$
\mu_{0 \leftrightarrow \downarrow, 0}=E_{\downarrow, 0}=E_{\uparrow, 0}+\Delta E_{Z} \text {, orbital }
$$

$$
\mu_{0 \leftrightarrow \uparrow, 1}=E_{\uparrow, 1}=E_{\uparrow, 0}+\Delta E_{\text {orb }}, \text { Orbitat ener }
$$

$$
\mu_{0 \leftrightarrow \downarrow, 1}=E_{\downarrow, 1}=E_{\uparrow, 0}+\Delta E_{\text {orb }}+\Delta E_{Z}
$$

(MSC, Quaction) 10

$0.5 \begin{array}{cc}f) & B: 11 T \\ & \\ 0=0 & N=1 \\ 0 \Delta V_{G}(m V)^{4}\end{array}$

Two e- spins in a dot
Gs: $|s\rangle=(|1 \downarrow\rangle-|l 1\rangle) / \sqrt{2} \|_{s y m} s=\theta$
LEX: $|T\rangle=\left\{\left.\begin{array}{l}T_{+}|11\rangle \\ T_{0}|1 \downarrow\rangle+|L 1\rangle / \sqrt{2} \\ T_{-}|L L\rangle\end{array} \right\rvert\, / S=1\right.$
anti sym
N.B: $\hat{T}\left[\phi_{1}, \phi_{2}\right] \rightarrow\left[\phi_{2}, \phi_{1}\right]$ transposition

$$
\begin{aligned}
& \hat{F}|1 l\rangle=-\| 1\rangle \\
& \hat{T}|s\rangle=|s\rangle \quad \hat{T}|T\rangle=-\mid T
\end{aligned}
$$

possible transitions /wo flipping spin (extra cost)

b)

c)

$-\underbrace{-0.1} \frac{d / / d V_{S D}}{(\mu \mathrm{~S})}+1.0$
d)

Singlet triplet crossing

i) B reduces $\triangle E$ between $C S$ \& $1 E X$
ii) B increases Coulomb interactions $(\rightarrow$ cheaper two orbitals) (MSC?

If Leman split exceeds width of energy levels (set by Etherm) we get spin polarized transport

Charge sensing

S could say that N acts as a gate" on.

NRC Fails if tunnel time $>$ meas time

Single shot readout Spinto charge conv (destructive)

b)

if the bump is missing \rightarrow GS which is seen by the step in the end
more likely to exchange with lead if wait long

$T R-R O$

