Electrically driven single-electron spin resonance in a slanting Zeeman field

M. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama & S. Tarucha

By Mathieu de Kruijf

Motivation

- Individual control of multiple electron spins
- Exploring the possibilities for large QD arrays

Device lay-out

- Well known GaAs QD device
- Micromagnet over the top
- AC gate on the side

Working principle

- Tuning AC frequency to flip either left or right spin lifting PSB
- Standard DQD stability diagram in PSB

Single spin resonance

- CW mode, to check for PAT, on resonance finite leakage
- Addressing both dots individually

Intermezzo: micromagnet design ideas

- Tapered magnet design for individual addressability
- Both change in B_y and B_z due to design -> individual resonance conditions

Overhauser effect

- Determining B_{ac} by finding saturation E-field
- B_{ac} > B_N, spin flip everytime
- B_{ac} < B_N resonance only met occasionally
- Saturation at $B_{ac} = B_N/2$

Rabi Oscillations

- No significant variations in F_{rabi} vs B_0
- S-O coupling responsible for slight decrease in F_{rabi}

Conclusions

- Individual addressability of QD's shown
- Accessible with a single ESR gate
- Modelled potential improved design for longer sequences of QD's