

PRL 100, 046803 (2008) PHYSICAL H

PHYSICAL REVIEW LETTERS

week ending 1 FEBRUARY 2008

Electrical Control of Spin Relaxation in a Quantum Dot

S. Amasha,^{1,*} K. MacLean,¹ Iuliana P. Radu,¹ D. M. Zumbühl,² M. A. Kastner,¹ M. P. Hanson,³ and A. C. Gossard³

Sami Amasha

Taras Patlatiuk 09.03.2020

- quantum computation
- good qubit long T₁, T₂, ...
- control spin-environment interactions

Outline

- electrical control of T₁
- relaxation is mediated by spin-orbit interaction (SOI)
- manipulate orbitals \rightarrow change T₁
- theory, spin-orbit length extraction
- SOI mediated coupling to phonons dominates relaxation for B>1T

Interactions

hyperfine interaction

- electron's spin ↔ effective magnetic field from nuclear spins
- electron spin state decoherence
- relaxation, suppressed for B>>B_n~3mT nuclear and electron Zeeman energies are very different

spin-orbit interaction

- mixing orbital and sin states
- couples spin to electrical environment
- primarily to piezoelectric phonons
- T₁ energy relaxation time scale
- spin decoherence T₂ < 2*T₁
 relaxation in singlet-triplet qubit

low B (still B>>Bn) HF interaction mediated coupling to phonons

Device architecture

- AlGaAs/GaAs heterostructure
- single-electron dot
- QPC charge sensor
- real time electron tunneling to lead 2 no tunneling to lead 1
- 120 mK = 10 ueV (1K = 86 ueV)
- all voltage pulses on LP2
- B||y

SOI mediated relaxation

- B = 0, no SOI: spins are degenerate inthe ground orbital state |g>
- B ≠ 0, no SOI: Zeeman split spins in |g↑> and |g↓>, phonon coupling is prohibited
- SOI mixes orbital and spin states
- change excited state energies to control the amount of mixing and spin relaxation

Orbital excited state control

- gate voltages manipulate the dot shape → energy of the orbital states
 - $V_{shape} = V_{SG1}$
- confinement potential:

$$U(x, y) = \frac{1}{2}m^*\omega_x^2 x^2 + \frac{1}{2}m^*\omega_y^2 y^2$$

• dot shape = horizontal ellipse:

$$w_x < w_y$$
 $E_x < E_y$

• vertical ellipse:

$$w_x > w_y \qquad E_x > E_y$$

Energy of the excited orbital states

- three step pulse sequence for each V_{shape}
- B = 0
- ionize
- pulse V_p , $E_p = e a_{LP2} V_p$
- pulse duration t_p: 15 us < t_p < 400 us
- small amount of tunneling into |g> averaged tunneling time 10 ms
- excited state more strongly coupled to the leads
- quick decay to |g>

t_p (μs)

- position |g> just below the Fermi energy
- dot ionized during the readout electron tunnels in, N_{ion}
- N_{ion} decays exponentially with t_p , rate Γ_{on}
- Γ_{on} depends on E_{p}
- excited state energies
- decrease of Γ_{on} due to the increase of the height of the tunnel barrier

Excited states manipulation

- position |g> just below the Fermi energy
- dot ionized during the readout electron tunnels in, N_{ion}
- N_{ion} decays exponentially with t_p , rate Γ_{on}
- Γ_{on} depends on E_p
- excited state energies
- decrease of Γ_{on} due to the increase of the height of the tunnel barrier
- E_x and E_y evolve as a function of V_{shape}

T₁ measurements

- B = 3 T
- ionize the dot
- pulse $|g^{+}\rangle$ and $|g_{+}\rangle$ below the Fermi level for the time t_w
- electrons can tunnel onto the dot
- relax from the spin excited state (|g↓>) to spin ground state (|g↑>)
- measure $|g\downarrow\rangle$ probability decay as a function of t_w , obtain W = $1/T_1$
- electrically control W

E - dependence

- smaller E_x, E_y stronger coupling and relaxation, larger W
- theory: $W = A_x E_x^{-4} + A_y E_y^{-4}$
- fit: $A_x/A_y < 0.14$
- only y-orbital contributes to spin relaxation
- SOI Hamiltonian:

 $H_{\rm SO} = \underline{(\beta - \alpha)p_y\sigma_x} + (\beta + \alpha)p_x\sigma_y$

- B||y
- y-parity change required (term proportional to p_y)
- higher energy excited state dominates spin relaxation for V_{shape} > -1000 mV

B - dependence

- $W \approx AB^5 E_y^{-4} \lambda_{SO}^{-2}$
- fit $\lambda_{SO} = 1.7 \pm 0.2 \ \mu m$
- SOI mediated coupling to phonons lead to spin relaxation rate: $W \propto B^5$

Conclusion

- electrical control of the spin relaxation rate
- Spin-orbit mediated coupling to phonons dominates spin relaxation

Hyperfine-phonon spin relaxation

