

Machine Learning for the Lab

Group meeting talk 08/04/2022 – Simon Geyer

Identifying Pauli spin blockade using deep learning

Jonas Schuff^{1,*}, Dominic T. Lennon¹, Simon Geyer², David L. Craig¹, Federico Fedele¹, Florian Vigneau¹, Leon C. Camenzind², Andreas V. Kuhlmann², G. Andrew D. Briggs¹, Dominik M. Zumbühl², Dino Sejdinovic³, Natalia Ares^{4,*}
¹Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
²Department of Physics, University of Oxford, Oxford OX1 3LB, United Kingdom
³Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
⁴Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom and
*Corresponding authors: jonas.schuff@materials.ox.ac.uk, natalia.ares@eng.ox.ac.uk
(Dated: February 2, 2022)

Content

- Why Machine Learning?
- How does it work?
- What do we use it for in the Lab? Spin blockade identification

Definition

"A computer program is said to learn from experience E with respect to some class of task T and performance measure P, if its performance at tasks in T as measured by P, improves with experience E." –T. M. Michell

- T: recognizing hand-written letters
- E: dataset of letters
- P: the fraction of letters identified correctly

Why Machine Learning?

- Programs that can automatically adapt to tasks
- Can replace humans for some monotonous tasks that require small amount of intelligence
- Can process large amount of data
- When programs would be to complex to program them directly

Why Machine Learning?

- Personalized news
- Spam filtering
- Hand writing recognition

Classification

Classification error

Use more data for better classification

Induction algorithm teaches machine how to classify

 \rightarrow Linear classifier

 \rightarrow Non-linear classifier

Overfitting/underfitting errors

\rightarrow Non-training data needed to verify

How does it work? -- Example 2: Neuronal Network for animal identification

Google Lens

Identify plants and animals

Find out what plant is in your friend's apartment, or what kind of dog you saw in the park.

How does it work? -- Example 2: Neuronal Network

How does it work? -- Example 2: Neuronal Network

How does it work? -- Example 2: Neuronal Network

What if real data is different from training data?

→ We don't know, Neuronal Networks are a black box

"A computer program is said to learn from experience E with respect to some class of task T and performance measure P, if its performance at tasks in T as measured by P, improves with experience E." –T. M. Michell

Identifying Pauli spin blockade using deep learning

Jonas Schuff^{1,*}, Dominic T. Lennon¹, Simon Geyer², David L. Craig¹, Federico Fedele¹, Florian Vigneau¹, Leon C. Camenzind², Andreas V. Kuhlmann², G. Andrew D. Briggs¹, Dominik M. Zumbühl², Dino Sejdinovic³, Natalia Ares^{4,*}
 ¹Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
 ²Department of Physics, University of Oxford, Oxford OX1 3PH, United Kingdom
 ³Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
 ⁴Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom and
 *Corresponding authors: jonas.schuff@materials.ox.ac.uk, natalia.ares@eng.ox.ac.uk
 (Dated: February 2, 2022)

Task

 Score Pauli spin blockade in a DC measurement of a DQD (useful for qubit readout) (c) (d)

J. Schuff et al., arXiv:2202.00574

Experience

• Training data from 4 devices labeled by 4 human experts and simulations

Increase amount of data by combining real experimental data with **simulated data**

Performance

• Test on labeled data from different device and evaluate accuracy of 10 ML classifiers

Performance

(a) 1.00 (b) True positive rate 0.95 Accuracy 0.90 0 0 1 0 0 1 False False False positive rate positive rate positive rate Mean 0.85 individual (c) 1.00 Ensemble 0.80 0.95 Simulated **Experimental** Mixed data data data AUC 0.90 Trained on 0.85 Mean individual = average accuracy Ensemble = average PSB score and then determine 0.80 Simulated Experimental Mixed accuracy data data data

Trained on

AUC is independent of score threshold:

J. Schuff *et al.*, arXiv:2202.00574

(a)

Simulator

 simulate current through randomized DQD levels w and w/o PSB and with random noise

 $I = \sum_{E_A} \sum_{E_B} I_{\text{partial}}$ = $\sum_{i} \sum_{k} \frac{\left(\Gamma_T^{(i,k)}\right)^2 \Gamma_R^{(k)}}{\left(\Gamma_T^{(i,k)}\right)^2 (2 + \Gamma_R^{(k)} / \Gamma_L^{(i)}) + \left(\Gamma_R^{(k)}\right)^2 / 4 + \epsilon_{(i,k)}^2}$ (B2)

J. Schuff et al., arXiv:2202.00574

Simulator

• Machine learning relies on large data set

Outlook: Tune-up algorithm

B. Severin *et al.*, arXiv:2107.12975v1

Summary

- Machine learning
 - can detect features learned from the training data
 - needs large amount of training data
 - can detect desired features in a live measurement
 - allows for automatic tune-up/optimization algorithms
- Identifying spin blockade:
 - 96.2% accuracy on a unseen device (by only looking at two bias triangles)
 - mixed dataset of experiments and simulated data makes ML feasable for rare events

Links

- <u>https://mnassar.github.io/deeplearninghandbook/slides/05_ml.pdf</u>
- https://de.slideshare.net/liorrokach/introduction-to-machine-learning-13809045

Example data

J. Schuff et al., arXiv:2202.00574