A high-sensitivity charge sensor for silicon qubits above one kelvin

Jonathan Y. Huang,^{1,*} Wee Han Lim,¹ Ross C. C. Leon,¹ Chih Hwan Yang,¹ Fay E. Hudson,¹ Christopher C. Escott,¹ Andre Saraiva,^{1,†} Andrew S. Dzurak,¹ and Arne Laucht^{1,‡}

¹Centre for Quantum Computation & Communication Technology, School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney 2052, Australia (Dated: March 12, 2021)

Recent studies of silicon spin qubits at temperatures above 1 K are encouraging demonstrations that the cooling requirements for solid-state quantum computing can be considerably relaxed. However, qubit readout mechanisms that rely on charge sensing with a single-island single-electron transistor (SISET) quickly lose sensitivity due to thermal broadening of the electron distribution in the reservoirs. Here we exploit the tunneling between two quantised states in a double-island SET (DISET) to demonstrate a charge sensor with an improvement in signal-to-noise by an order of magnitude compared to a standard SISET, and a single-shot charge readout fidelity above 99% up to 8 K at a bandwidth > 100 kHz. These improvements are consistent with our theoretical modelling of the temperature-dependent current transport for both types of SETs. With minor additional hardware overheads, these sensors can be integrated into existing qubit architectures for high fidelity charge readout at few-kelvin temperatures.

Leon Camenzind

March 29, 2021

SPIN Journal Club

Motivation for hot spin qubits

Petit *et al.,* Nature **580** (2020). Intel Horse Ridge cryogenic controller (3K): Xue et al., arXiv:2009.14185 (2020).

Hot spin qubits

 $\overline{\Psi}$

0.1

0.01

10⁻³

10-4

10-5

10-6

0.03

₹

Ramsey time, T_2^* , Hahn echo time, T_2^{Hahn} , Relaxation time, T_1 (s)

 ∇T_1

★ T₂*

Spin qubit read-out

Sensors: QPCs, QDs, **SETs** Also tank circuit: RF-QPC etc.

Field et al., PRL (1993), Elzerman et al., PRB (2003), Lu et al., Nature (2003), Vandersypen et al., APL (2004). RF-QPC: Reilly et al., APL (2007) RF-SET: Schoelkopf et al., Science (1998) RF-QD: Barthel et al., PRB (2010) Gate sensor: tank circuit sensitive to quantum capacitance (tunneling)

Colless et al., PRL (2013)

Nb on sapphire

single shot (parity) read-out

Yang et al., Nature (2021)

Advantage: scalability + temperature

West et al. Nat. Nano (2019), Pakkiam et al., PRX (2018), Urdampilleta et al., Nat. Nano (2019).

Charge sensing

Charge sensing

Energy selective read-out (Elzerman)

7

U N I B A S E L

Device overview

SISET transport characteristics

DISET charge sensor

DISET transport characteristics

11

UNI BASEL

DISET transport characteristics

Temperature depenendence of transport characteristics

Model: optimizing the sensitivities

UNI BASEL

Charge sensing of quantum dot

× 7

Real time «single shot» charge read-out

Temperature limit for quit readout

Set RO error threshold to 0.1% \rightarrow max meas. BW Compare to 99% of T_1 -decay (T_1 limits read-out)

Max. BW for SET	Qubit properties (Ref. 13)
readout F > 99.9 %	1 % phase flip error
O DISET O SISET	${f abla}$ 1 % bit flip error

Readout within 1 %		Readout within 1 %
of T ₂ ^{Hahn} decay		of T ₁ decay
DISET	<i>T</i> < 1 K	<i>T</i> < 2.1 K
SISET	<i>T</i> < 0.24 K	<i>T</i> < 0.85 K

Qubit data: Yang *et al.*, Nature **580** (2020).

Single-shot still very temperature sensitive

For high fidelity RO:

- $k_b T \ll g \mu_B B$
- $k_b = 86 \ \mu eV/K$ $\mu_B = 58 \ \mu eV/T$ (1 GHz = 4.1 μeV)

Isolated mode operation

Yang et al., Nature (2020).

Conclusions

- **"A high-sensitivity charge sensor for silicon qubits above one kelvin",** Huang et al., arXiv:2103.06433 (2021).
- DISET more sensitive more temperature robust than SISET
- RO Fidelity >99% at 8K (>100 kHZ)
- RO Fidelity >99.9% at 2.1 K (200 kHZ)

Interesting technology for hot qubits

Thank you for your attention!

Goodbye Florian!

SNR and output spectrum

Model: optimizing the sensitivities

Transport characteristics: DISET Model

 $|0\rangle$: empty $|1\rangle$: left $|2\rangle$:right e.g. Γ_{12} = transition rate left to right

$$\begin{split} I_{\rm DS} &= e \frac{\Gamma_{02}\Gamma_{21}\Gamma_{10} - \Gamma_{01}\Gamma_{12}\Gamma_{20} + (\Gamma_{01}\Gamma_{20} - \Gamma_{10}\Gamma_{02})\Delta}{\Gamma_{\Sigma}}, \\ \Delta &= t_{\rm LR}^2 \frac{\Gamma_{10} + \Gamma_{20} + \Gamma_{\rm LR}}{(\frac{\Gamma_{10} + \Gamma_{20} + \Gamma_{\rm LR}}{2})^2 + (\frac{\mu_{\rm L} - \mu_{\rm R}}{h})^2} \qquad (2) \\ \hline \Gamma_{01} &= f_{\rm fD}(\mu_{\rm S}, T; \mu_{\rm L})t_{\rm S}, \quad \Gamma_{10} = t_{\rm S} - \Gamma_{01}, \qquad (3) \\ \Gamma_{02} &= f_{\rm fD}(\mu_{\rm D}, T; \mu_{\rm R})t_{\rm D}, \quad \Gamma_{20} = t_{\rm D} - \Gamma_{02}, \qquad (4) \\ \hline \begin{cases} \Gamma_{12} &= f_{\rm fD}(\mu_{\rm L}, T; \mu_{\rm R})\Gamma_{\rm LR} \\ \Gamma_{21} &= \Gamma_{\rm LR} - \Gamma_{12} \end{cases}, \quad \mu_{\rm L} > \mu_{\rm R} \qquad (5) \\ \Gamma_{12} &= f_{\rm fD}(\mu_{\rm R}, T; \mu_{\rm L})\Gamma_{\rm LR} \\ \Gamma_{12} &= \Gamma_{\rm LR} - \Gamma_{21} \end{cases}, \quad \mu_{\rm L} \leq \mu_{\rm R}. \qquad (6) \end{split}$$

UNI BASEL

DISET Charge sensor

