

FMM, June 6th 2020

Christian Scheller

Applied Physics Letters	ARTICLE	scitation.org/journal/apl
-------------------------	---------	---------------------------

Superconductivity in AuNiGe Ohmic contacts to a GaAs-based high mobility two-dimensional electron gas

Cite as: Appl. Phys. Lett. 117, 162104 (2020); doi: 10.1063/5.0028217	A	-t-	
Submitted: 3 September 2020 · Accepted: 7 October 2020 ·		-	U
Published Online: 19 October 2020	View Online	Export Citation	CrossMar

C. B. Beauchamp, ¹	🝺 S. Dimitriadis, ¹ 向	J. T. Nicholls, ^{1,a)}	L. V. Levitin, ¹	D A. J. Casey,	P. See, ² G. Creeth, ³
J. Waldie, ⁴ 🕞 I. Farr	er, ^{4,5} 🕞 H. E. Beere, ⁴	and D. A. Ritchie	` (D)		

AFFILIATIONS

- ¹Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
- ²National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 OLW, United Kingdom
- ³London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
- ⁴Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 OHE, United Kingdom
- ⁵Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom

<u>Overview</u>

Sample structure

- Hall measurements
- Contact & 2DEG resistance vs temperature
- > Surface resistance $R_{top} \rightarrow SC$
- → Vertical resistance $R_V \rightarrow SC$
- Ohmic formation, material analysis
- Potential SC compounds in contacts

Sample structure/processing

Wafer structure

- 3 wavers, same MBE structure
- > 2DEG depth 90nm
- Si-doping: 1.5-1.65*10¹⁸cm⁻³
- Ohmic: Anneal in RTA 80s, 430°C in forming gas (N₂+H₂)

Growth: Cambridge University

- Ian Farrer (W476)
- Harvey Beere (V827, V834)

Wafer(s)	Batch	Metal deposition method	Layer thicknesses
W476	Ι	Eutectic	Total thickness=160 nm Au:Ge:Ni=83:12:5 wt%
V834 and V827	II	Layered	Total thickness= 349 nm Ni/AuGe/Ni/Au= $3 \text{ nm}/136 \text{ nm}/30 \text{ nm}/180 \text{ nm}$
V834	III	Layered	Total thickness= 344 nm Ni/AuGe/Ni/Au= $0 \text{ nm}/130 \text{ nm}/50 \text{ nm}/164 \text{ nm}$
V834	IV	Layered	Total thickness= 353 nm Ni/AuGe/Ni/Au= $0 \text{ nm}/123 \text{ nm}/30 \text{ nm}/200 \text{ nm}$

AuGe eutectic: 88% Au, 12% Ge (weight)

Figure	Sample	Device	Wafer	Batch
Figs. $1(a)$ and (b)	А	4 mm $\times 4$ mm	W476	Ι
Figs. $2(a)-(d)$	В	$4\text{mm} \times 4\text{mm}$	V827	II
Fig. 3 (b)	\mathbf{C}	TLM	V834	III
Fig. 3 (c)	D	TLM	V834	IV
Fig. 3 (d)	\mathbf{E}	TLM	V834	II
Fig. 4	\mathbf{F}	$4 \text{mm} \times 4 \text{mm}$	V834	II
Fig. S3		TLM	V834	III
Fig. S4		$4 \text{mm} \times 4 \text{mm}$	V834	II

Ohmics become SC below 0.9K

Sample A: 4mm*4mm, 2mm*4mm 2DEG, 1.2mm separation 4T contacts

Ohmics: 160nm AuNiGe eutectic %wt: 83% Au, 5% Ni, 12% Ge

Mobility: $\mu = 2 \cdot 10^6 cm^2 / Vs$ (4.2K after illumination) SdH above 100mT $n_{2D} = 3 \cdot 10^{11} cm^{-2}$ (Hall slope / indexed SdH) $R_{sh} = 10\Omega / \blacksquare$

 $R_{2DEG}(B = 0, T) \sim 0.8 \Omega$ above 0.9 K $R_C(B = 0, T) \sim 0.2 \Omega$ at low T

Ohmic surface resistance

- Investigate different parts of Ohmic
- > Surface: 4 Bonds on current contact \rightarrow 4T meas. of pad
- > Zero resistance at low T, $T_c \sim 0.9K$
- ➢ Critical field B_{II} ~ 150mT
- > Phase diagram $\rightarrow T_c \sim 0.9K$
- Critical current I_C(T_{base}) ~ 2mA

Ohmic vertical resistance

Parallel B-field, dark/illumnated

- ➢ 2T measurement → 2DEG + Ohmic
- Small magnetoresistance for B_{II}
- \blacktriangleright Resistance drop ~ 0.5 Ω
- > B_c ~ 200mT (150mT for B_{perp})

		<u>Device de</u>	tails
V834	Π	Layered	Total thickness= 349 nm Ni/AuGe/Ni/Au= $3 \text{ nm}/136 \text{ nm}/30 \text{ nm}/180 \text{ nm}$

General trends

- AuNiGe Eutectic: broadest transitions (batch I)
- Batch II, III highest Tc, narrowest transition
- R_{top}, R_v above T_C constant up to 20K (disordered alloy)
- > T_c and drop in R_{top}, R_v, R_c similar before/after illumination (not a 2DEG property)

Wafer(s)	Batch	Metal deposition method	Layer thicknesses
W476	Ι	Eutectic	Total thickness=160 nm Au:Ge:Ni=83:12:5 wt%
V834 and V827	II	Layered	Total thickness= 349 nm Ni/AuGe/Ni/Au= $3 \text{ nm}/136 \text{ nm}/30 \text{ nm}/180 \text{ nm}$
V834	III	Layered	Total thickness= 344 nm Ni/AuGe/Ni/Au= $0 \text{ nm}/130 \text{ nm}/50 \text{ nm}/164 \text{ nm}$
V834	IV	Layered	Total thickness= 353 nm Ni/AuGe/Ni/Au= $0 \text{ nm}/123 \text{ nm}/30 \text{ nm}/200 \text{ nm}$

Eutectic: 88% Au (weight)

Formation of Ohmics

Good Ohmics

- 2DEG depth
- thickness AlGaAs layer
- sequence, thickness, composition of contact metal layers
- RTA temperature & time
- 2DEG mobility
- Surface quality before deposition

Ohmic formation

- 1. Ge compounds with Ni, As
- 2. Diffusion into GaAs
- 3. Replace Ga (Ge is n-dopant)
- 4. Ga up-diffusion
- 5. Au-Ga alloys

			5	6	7
			В	С	Ν
			13	14	15
10	11	12	AI	Si	Р
28	29	30	31	32	33
Ni	Cu	Zn	Ga	Ge	As
46	47	48	49	50	51
Pd	Ag	Cd	In	Sn	Sb
78	79	80	81	82	83
0.000	10.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

13

14

15

 $5\,\mu m$

- β-AuGa most commonly observed, not SC
- Other known Ga based SC alloys:

AuGa:	T _C =1.1K	B _c =6mT
AuGa ₂	T _c =1.63K	B _c >>10mT
α-Ga	Т _с =0.9К	B _c =6mT

Superconducting compound?

- Elements/compounds in AuNiGe Ohmics
- Combinations of Au, Ni, Ge, Al, GaAs

Material	Present in AuNiGe	Superconducting
	ohmic? (Y or N)	properties: T_c and B_c
α-AuGa	Y[19, 4]	$0.008-0.264 { m ~K}[5]$
β -AuGa, Au ₇ Ga ₂	Y[20, 21, 22, 4, 23, 3, 24, 25, 26, 27]	
${ m Au}_4{ m Ga}$	Y[6, 7]	
Au_2Ga	N	
AuGa	N	1.24-1.3 K, 30 mT [14, 8, 28]
$AuGa_2$	Y[29]	1.7 K, 30 mT[8, 13, 28]
α -Ga	Y [2]	1.083 K, 5.8 mT[11]
β -Ga	Ν	6.04 K, 57 mT
Au(Ge,Ga)	Y[3]	
AuGe	Y[15, 16]	$3.1 \ { m K}[17]$
Au/Ge layered	Ν	$0.6-0.8 \mathrm{K[18]}$
Al	N	$1.175 { m ~K}, 10.5 { m ~mT}$
α -AuAl	N	$0.008-0.385 { m ~K}[5]$
$AuAl_2$	N	0.18 K, 1.2 mT[13, 30, 31]
Au_4Al	N	$0.3-0.7 { m ~K}[14]$

 \rightarrow Need full structural study to determine SC compound in contact

<u>Summary</u>

- Investigation of Ohmics on high-mobility 2DEG
- SC transition observed below ~0.9K in all samples with B_c~150mT
- > Separately determine R_v , R_{top} , $R_v << R_{top}$, both become SC
- Many SC AuGa alloys exist (Ge down-diffusion, Ga from up-diffusion)
- Precise structure analysis needed to determine exact compound
- Cooling 2DEG to ultra-low temperatures:
 - apply 200mT field to break SC
 - use other Ohmic material, e.g. PdGe (PdGa alloys not known to be SC)