

Department of Physics

Christian Scheller

Cooling Low-Dimensional Electron Systems into the Microkelvin Regime

Lev V. Levitin,^{1,*} Harriet van der Vliet,^{1,†} Terje Theisen,¹ Stefanos Dimitriadis,^{1,‡}
Marijn Lucas,¹ Antonio D. Corcoles,^{1,§} Ján Nyéki,¹ Andrew J. Casey,¹ Graham Creeth,^{2,¶} Ian Farrer,^{3,**} David A. Ritchie,³ James T. Nicholls,¹ and John Saunders¹
¹Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, UK
²London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
³Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK (Dated: September 28, 2021)

arXiv:2110.01887v1 [cond-mat.mes-hall] 5 Oct 2021

Department of Physics

Motivation

Phases of matter

Fractional Quantum Hall effect

Magnetic transitions

Fundamental forces

Why go to low T?

Energy (k_BT) = Temperature = disorder (TdS=dU) Lower T \Rightarrow more ordered phenomena

- Fragile FQH states
- Many-body effects (nuclear order in GaAs due to RKKY)
- Coherence
- Phase transitions
- Quasiparticles in SC (qubits, majorana)
- New physics...

Why Semiconductor ?

Can engineer stuff as you like (gates, growth)

Super conductivity / fluidity

Spin + B-field

2

Department of Physics

Cooling Method: AND

AND: Single shot magnetic cooling, 3 steps:

- (1) magnetize and precool
- (2) decouple (AI heat switch \rightarrow SC) and demagnetize
- (3) warmup (experiments)

This work: Sample in liquid ³He

- Bulk Cu nucl. Refrigerator
- Plastic / metal ³He immersion cell
- 2DEG sample & noise thermometer

1cm

Metal cell

 300μ K in ³He bath

Sample

Sample:

• GaAs/AlGaAs 2DEG

Department of Physics

- Before LED: $n=2\cdot 10^{11}cm^{-2}$; $\mu=1\cdot 10^6$; $R_{Square}=31~\Omega$
- After LED: $n = 3.3 \cdot 10^{11} cm^{-2}$; $\mu = 3 \cdot 10^6$; $R_{Square} = 6 \Omega$
- AuNiGe Ohmic contacts < 1Ω @ 4,2 K, become SC below 0.6 K
- Noise thermometer: Brownian motion e⁻ in Au wire

Heavy filtering

- Cu-powder
- Ag-epoxy (SC core, btw noise therm. & SQUID)
- Discrete $R = 500 \Omega$, C = 20 nF

Sequential improvements

WF – EP coupling – Kapitza

Department of Physics

Wiedemann-Franz law:

- $\frac{\kappa}{\sigma} = L_0 \cdot T$ where $\kappa(\sigma)$: thermal (electrical) conductivity, L_0 = Lorentznumber
- $\kappa = \frac{1}{3}c_V mnl < v > \text{ kinetic gas theory}$

 $\sigma = \frac{ne^2\tau}{m} = \frac{ne^2l}{m < v > 0}$

Drude model

• $c_v = \frac{\partial \epsilon}{\partial T} \propto Tg(\epsilon_F)$ # excited e⁻ @ T: $\propto g(\epsilon_F)k_BT$, each one carries energy k_BT

•
$$Q_{WF}^{\cdot} = L_0/(2R) \cdot (T_1^2 - T_0^2)$$

Electron phonon coupling

 $\dot{\mathbf{Q}_{e-ph}} = \Sigma \Omega (\mathbf{T}_1^5 - \mathbf{T}_0^5)$

- Σ : EP coupling constant (material dependent)
- Ω : Volume

$f_0(\varepsilon)$ $\frac{\mathrm{d}f_0(\varepsilon)}{\mathrm{d}\varepsilon}$ $\varepsilon_{\rm F}$

Kapitza boundary resistance

- Mismatch sound velocity
- Total internal reflection of phonons
- LHe & metal \rightarrow large mismatch \Rightarrow total refl. for $\alpha > 3^{\circ}$ •
- Need sinters to cool metal in LHe (large area)

 $\dot{\mathbf{Q}_{Kapitza}} = \mathbf{c}_1(\mathbf{T}_1^3 - \mathbf{T}_0^3) + (\mathbf{c}_2(\mathbf{T}_1^4 - \mathbf{T}_0^4))$

Experimental setup

Department of Physics

Setup and measurement procedure

- 1 NT (noise thermometer): Brownian motion in gold wire
- 2 heaters (resistors): 2DEG, NT (other AU wire)
- LED to change 2DEG (mobility, density, charge noise)

 \Rightarrow Measure T_{NT} vs heating \Rightarrow therm. conductivity \Rightarrow T_e (heat flow model)

Thermal transport

5

Department of Physics

Heating noise thermometer (Au wire)

- $G_{\Sigma} = dQ_{NT}^{\prime}/dT_{NT}$
- 2 cooling path: ohmics + 2DEG / liquid 3He
- Consider WF & Kapitza

 $\Rightarrow G_{\Sigma} = \frac{L_0 T}{R_e} + K_2 T^2 + K_3 T^3$

Heating the 2DEG (passing current)

- $G_{\rm N} = d\dot{Q_e}/dT_{NT}$ nonlocal therm.cond. : heat 2DEG, observe T_N
- 3rd (unknown) cooling path, not relevant below 3mK (EP cooling?)
- $G_{\rm N} = (G_{\Sigma} + X_4 T^4)/\alpha$

Combine the two, neglect X4-term

$$\dot{Q}_{\rm NT} + \alpha \dot{Q}_{\rm e} = \int_{T_{\rm bath}}^{T_{\rm NT}} G_{\Sigma}(T) \, dT = \frac{L_0}{2R_{\rm e}} \left(T_{\rm NT}^2 - T_{\rm bath}^2 \right) \\ + \frac{K_2}{3} \left(T_{\rm NT}^3 - T_{\rm bath}^3 \right) + \frac{K_3}{4} \left(T_{\rm NT}^4 - T_{\rm bath}^4 \right).$$

• Heat leak: heaters off (\dot{Q} is only heat leak), measure T_{NT} , T_{bath}

Thermal conductance

Department of Physics

Heating noise thermometer (Au wire)

- $G_{\Sigma} = dQ_{NT}^{\cdot}/dT_{NT}$
- 2 cooling path: ohmics + 2DEG / liquid 3He
- Consider WF & Kapitza

 $\Rightarrow G_{\Sigma} = \frac{L_0 T}{R_e} + K_2 T^2 + K_3 T^3$

Department of Physics

Heating the 2DEG (passing current)

- $G_{\rm N} = d\dot{Q_e}/dT_{NT}$ nonlocal therm.cond. : heat 2DEG, watch response T_N
- 3rd (unknown) cooling path, not relevant below 3mK (EP cooling?)
- $G_{\rm N} = (G_{\Sigma} + X_4 T^4)/\alpha$

Wiedemann Franz law

$$\dot{Q} = \frac{L_0}{2R} (T_1^2 - T_0^2)$$

$$\dot{Q_e} = \frac{L_0}{2(1-\alpha)R_e} (T_N^2 - T_e^2) + \frac{L_0}{2\alpha R_e} (T_b^2 - T_e^2)$$

$$T_{\rm e}^2 = (1 - \alpha) T_{\rm bath}^2 + \alpha T_{\rm NT}^2 + 2\alpha (1 - \alpha) R_{\rm e} \dot{Q}_{\rm e} / L_0$$

LED illumination

Department of Physics

- Changes only 2DEG properties
- Large heat leak after LED, saturates after 40 days at high value
- Lowest Te before LED (0.9mK)
- HL: 0.7fW (1.9fW) before (after) LED
- T_e, T_{NT} almost identical

Critics / Conclusions

Department of Physics

<u>Critics</u>

- SC Ohmics: resistance for WF from fit, not measured Better: Apply magnetic field (don't need to assume R)
- Very indirect temperature measurement (heat model correct?)
- Additional cooling term for 2DEG, what is it?
- Functional form of Kapitza (not measured), assumed 3rd (standard)+ 4th power ???
- Heater resistance (Au wire) not known, inferred from similar measurements
- Thermal cond. almost described by (assumed) Kapitza resistance Te from the small deviation

Conclusion

- Impressive work
- Result questionable

