

Quantum Coherence Lab Zumbühl Group

#### **Two-Axis Quantum Control of a Fast Valley Qubit in Silicon**

Nicolas E. Penthorn, Joshua S. Schoenfield, John D. Rooney, Lisa F. Edge and HongWen Jiang

npj Quantum Information (2019)5:94

1

### Motivation

- Silicon as a leading contender for hosting qubits
  - Usually spin qubits
  - Nearly degenerate valley states are a possibility for information loss
- Idea: Use of valley states as the qubit
  - Fully electrically controllable (no magnetic field needed)
  - Measured through valley-orbit coupling
  - Large gate voltage space which does not change the valley splitting
    - Could have protection against charge noise
  - Fast gate operation (in order of 10 GHz)
- In this paper
  - Mapping of the surface of the Bloch sphere with sub-nanosecond gate operations



#### Device

 $dI_{QPC}/dV_{P}$  (arb.) -0. (3,2)-0 (2,2) € ∽\_-0.25 (1,2) (0,0) (0,2) -0.35 -0.4 -0.35 -0.3 -0.25  $V_{\mathsf{R}}\left(\mathsf{V}\right)$ 



 $V_R$  (mV)

a

-60

-70

- Double Quantum Dot on a Si/SiGe heterostructure
  - Density:  $4 \cdot 10^{11}$  cm<sup>-2</sup>
  - Mobility  $7 \cdot 10^5 \text{ cm}^2/\text{Vs}$
  - Gate Material: Ti/Au
  - **Dielectricum: Al2O3**
  - Global Top Gate: Aluminium
- Measurements
  - Dilution Refrigerator, base T = 36 mK
  - Voltage Pulses: Agilent 81134 A pulse generator
    - Repetition rate 7.5 MHz

## **Coherent Valley Oscillations**

- Initialization in (1,1) charge configuration (=  $|R_{V1}\rangle$ )
- Trapezoidal pulse (rise time 200 ps) modifies system detuning  $\epsilon = V_R V_L$
- Anticrossing at  $\epsilon \approx 0 \rightarrow$  superposition of two lowest energy states  $\psi = 1/\sqrt{2}(|L_{V1}\rangle + e^{i\phi}|L_{V2}\rangle)$
- At maximum detuning: Larmor precession (frequency determined by valley splitting)
- Phase difference mapped to charge states
- Projective readout relies on dot occupation
  - Small valley splitting transformed into large energy difference
- Note: valley splitting modified by spin states, but does not affect charge-based read-out sensitivity
- Lower bound for  $T_2^* > 7$  ns (decay of oscillations)



### Ramsey Spectroscopy

а



- Three-stage pulse only on V<sub>R</sub> (+ no tunneling out or into dot)
  - High visibility precession
  - Frequency directly convertible to energy gap
  - Valley splittings:  $\delta_L = 4.55~{
    m GHz}$  and  $\delta_R = 15.7~{
    m GHz}$
- Sweet spots at ε = 20 μeV (first order insensitive to charge noise) and at large detuning (splitting independent of gate voltage)
- Valley splitting varies from dot to dot (10  $\mu$ ev to 60  $\mu$ eV)
  - Gate voltages modify up to 20%

5

dI/dV (arb.)

# Fast Two-Axis Control I



- Three-stage pulse scheme
  - Initialization at  $\epsilon_0 = |R_{V1}\rangle$
  - 1. Pulse to  $\epsilon_{\chi}$  = anticrossing, precess for time  $t_{\theta}$
  - 2. Pulse to  $\epsilon_z$ , precess for time  $t_\phi$
  - 3. Pulse to ε<sub>x</sub>, precess for time t<sub>θ</sub> → maps valley state to charge state
- Rise time of 200 ps not fast compared to state evolution
  - Rotation occur at an angle  $\alpha \sim \pi/4$
- Mapping of the entire surface of Block sphere possible [1]
- Note: Mapping is dependent on  $t_{\theta}$  due to finite rise time
  - Probablity of finding excited state vanishes at even multiples of π (in θ)
- Trace with fixed  $\phi$ : projective measurement of state with initialization and measurement axis determined by  $t_{\theta}$

[1] Previously shown in self assembled quantum dots (Press *et al*.Nature 456, 218-221 (2008), but here the first time in gate defined quantum dots

#### b а Fixing $t_{\theta}$ at 0.22 ns with variable $t_{\phi}$ = Z rotation in 0.8 0.8 ر× 0.t ۵.۶ م equatorial plane Z rotations have maximum amplitude Fixing $t_{\theta}$ at 0.5 ns with variable $t_{\phi} = Z$ rotation at north 0.3 0. pole of bloch sphere Z rotations have minimal amplitude 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Frequencies of rotation agree with energy splitting at $t_{\phi}$ (ns) $t_{\phi}$ (ns) $P_{|L_{v2}\rangle}$ 1 C operation points а $|L_{v1}\rangle$ d 0.8 $t_{ heta}$ (ns) ٩N 0.4 0.2 $|x\rangle$ $|y\rangle$ 0.2 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 $|L_{v2}\rangle$ $t_{\phi}$ (ns) $t_{\phi}$ (ns)



Fast Two-Axis Control II

# Valley Qubit Operation Fidelities

- Fidelities from quantum process tomography (QPT)
- True QPT not possible due to dynamical projection approach
- Still possible with comparison to theory and reconstruction of states (missing components are approximated)
- $F_{\pi/2} = 85\%$ ,  $F_{\pi} = 79\%$ ,  $F_{2\pi} = 93\%$
- Fidelities limited by rotation axis errors (not decoherence)
- Can be improved with better pulse shaping
- Choice of \(\epsilon\_z\) has large importance due to converging of energy splitting
  - Charge noise and charge coupling
  - Further supported by coherence time during Zrotation: 1.5 ns (smaller than typical valley relaxation times)



#### Summary



- Realization of a valley qubit in a semiconductor
- Fully electrically controlled
- Fast operation (200 300 ps)
- Currently inferior to hybrid qubit systems
- Can be improved with proper pulse engineering and detuning

# Fast Two-Axis Control III

 $5\pi$ 

47

θ (rad.) <sup>ε</sup>

 $2\pi$ 

0





10