

FMM, June 6th 2020

Christian Scheller

PHYSICAL REVIEW X 10, 011060 (2020)

Coherence of a Driven Electron Spin Qubit Actively Decoupled from Quasistatic Noise

Takashi Nakajima[®],^{1,*,**} Akito Noiri[®],^{1,**} Kento Kawasaki,² Jun Yoneda[®],^{1,‡} Peter Stano,^{1,2,3}
Shinichi Amaha[®],¹ Tomohiro Otsuka,^{1,§} Kenta Takeda[®],¹ Matthieu R. Delbecq[®],^{1,¶} Giles Allison[®],¹ Arne Ludwig[®],⁴ Andreas D. Wieck[®],⁴ Daniel Loss,^{1,5} and Seigo Tarucha^{1,†}
¹Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
²Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
³Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
⁴Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
⁵Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

(Received 10 July 2019; revised manuscript received 10 January 2020; accepted 31 January 2020; published 10 March 2020)

Hyperfine Bottleneck (in GaAs)

- Fluctuating nuclear spins in GaAs: ⁷⁵As, ⁶⁹Ga, ⁷¹Ga, all of them 3/2 nucl. spin
- Hyperfine interaction \Rightarrow eff. B-field (overhauser field) seen by electrons

How to resolve the problem?

- Eliminate nuclear spin (change material), e.g. isotopically purified Si
- Electrons (s-type) \rightarrow Holes (p-type) \Rightarrow reduced Hyperfine
- Polarize all nuclear spins \Rightarrow no fluctuations left
- Stabilize Overhauser field by DNP \Rightarrow no fluctuations left
- Echo sequences to decouple from slowly varying Overhauser field
- Adjust RF frequency to include present nuclear polarization (this paper)

GaAs nuclear spins: RDNMR

Resistively detected NMR

- RF coil: Scramble up thermodynamic nucl. pol. (no pumping)
- FQHE for detection (no pick up coil):

Overhauser field \rightarrow Zeeman term (no orbital effects, v given by B_{ext}) Onset of R_{xx} peaks (quasiparticle excitation) given by $B_{tot} \Rightarrow$ depends on nucl. pol.

Impedance matched thermalizer & RF coil

Pumping nuclear spins

- Pumping nucl. Polarization: Electron-nuclear spin flip-flop process
- Ingredients: Hyperfine gap, Landau Zener tunnelling

- GaAs double quantum dot
- QPC charge sensor

3-stage pumping cycle generating single flip-flop

- 1. Initialize S(0,2) singlet
- 2. Rapid adiabatic passage in 1ns (Landau Zener): $S(0,2) \rightarrow S(1,1)$
- 3. Slow adiabatic passage in 100ns: $S(1,1) \rightarrow T+$ (flip flop process)
- 4. Unload and reinitialize S(0,2)

Stabilizing nuclear spins using DNP

(a

35

30

- GaAs double quantum dot: S-T₀ qubit
- ΔB_z^{nuc} leads to S-T₀ oscillations \rightarrow extract ΔB_z^{nuc} from frequency (at $\epsilon << 0$)

Probing nuclear field gradient ΔB_{z}^{nuc} :

- Initialize S(0,2), fast pulse to S(1,1)
- Wait: S-T₀ oscillations
- Pulse back to start and see if S(0,2) is recovered

Pumping

- Prepare S(T⁺), sweep though S-T⁺ transition \rightarrow build up (reduces) pol. with respect to B_{ext}
- Imbalance in pol. rates of dots leads to ΔB_z^{nuc}

Stabilizing polarization

• Strong narrowing of ΔB_{Z}^{nuc} distribution and increase in T_{2}

5

Dynamical decoupling pulses

Purified Si/SiGe QD
EDSR (micromagnet)

- Elzerman readout

- CPMG decoupling: $\pi/2_x \rightarrow \pi_y \rightarrow \pi/2_x$ - Gate fidelity: X 99.941%, others similar

- Extracted noise power spectral density
- 1/f noise over 7 decades ! Limiting qubit

Coherence of a Driven Electron Spin Qubit Actively Decoupled from Quasistatic Noise

Takashi Nakajima⁽⁰⁾, ^{1,*,**} Akito Noiri⁽⁰⁾, ^{1,**} Kento Kawasaki, ² Jun Yoneda⁽⁰⁾, ^{1,‡} Peter Stano, ^{1,2,3}
Shinichi Amaha⁽⁰⁾, ¹ Tomohiro Otsuka, ^{1,§} Kenta Takeda⁽⁰⁾, ¹ Matthieu R. Delbecq⁽⁰⁾, ^{1,¶} Giles Allison⁽⁰⁾, ¹ Arne Ludwig⁽⁰⁾, ⁴ Andreas D. Wieck⁽⁰⁾, ⁴ Daniel Loss, ^{1,5} and Seigo Tarucha^{1,†}
¹Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
²Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
³Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
⁴Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
⁵Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

Department of Physics, Ontrensity of Dasel, Rungeloergenasse of, Or 1000 Dasel, Switzenand

(Received 10 July 2019; revised manuscript received 10 January 2020; accepted 31 January 2020; published 10 March 2020)

- Suppress low freq. noise by freq. feedback
- Limiting coherence factor in GaAs
- Caused by nucl. spins fluctuations 1/f²

Device & Ramsey measurements

EL

Initialize

(1, 1)

 $S \leftrightarrow T$. (0, 2)

- GaAs tripple quantum dot Ti/Au gates
- Micromagnet \rightarrow field gradient \rightarrow individually addressable spins
- Left dot: Decoupled (unused)
- Middle dot: Qubit
- Right dot: Ancilla (initialization & readout)

Rabi oscillations:

- Initialize "S(0,2)", rapid passage to "S(1,1)"
- MW burst time tb
- Measure return-probability to "S(0,2)" vs tb

Ramsey:

- Apply $1/4f_{rabi}$ pulse ($\pi/2$) wait t_R , apply $\pi/2$
- f_{ramsey} fluctuates due to Overhauser field
- Averaging gives reduced T₂*=28ns

Adiabatic

unload

Adiabatic

load

Time

Measure

Feedback loop

Use fluctuating ramsey oscillation as a feedback for qubit frequency (estimate B_{tot})

Probe stage:

- 150 samples (t_R=2,4,...,300ns)
- Set $f_{MW} = f_q^{est} + \Delta_p (\Delta_p = 50 MHz$, larger than nucl. fluctuations)

Target stage:

- Set $f_{MW} = f_q^{est} + \Delta$ ($\Delta = 0$ means qubit should be on resonance)
- Perform whatever measurement
 - e.g. Ramsey (set Δ =50MHz)
 - e.g. Rabi (set Δ =0MHz)
- Narrowing scales with latency of feedback \rightarrow study noise spectrum
- Limited by freq. Bins of 0.25MHz (\cong saturation of orange fit)

Performance with Feedback

Ramsey interference (off resonance)

Robust fringes, T_2^* =767ns (before 24ns)

E-field shift:

- Probe (Ramsey) without RF
- Measurement (Rabi) with drive (E-field)
 → destroys the Feedback
- Solution: Use off-resonant MW bursts

Benchmarking:

- Gates X, Y, X/2, Y/2, -X/2, -Y/2 with fidelity of 96-99%
- X gate fidelity: 99.04 %

T. Nakajima et al., Phys. Rev. X 10, 011060 (2020)

Rabi oscillations (on resonance)

Stable chevron Rabi pattern, but symmetry off? Dispacement scaling with E-field squared

Spectral noise & limitations

75 As

7 8 9 10

Frequency J (MHz)

20

30

40

[®]Ga ⁷¹Ga

Spectral noise from Rabi decay

- Rabi with feedback: Exponential decay envelope (typical for e.g. Si but not for GaAs)
- If dominated by high frequency noise, S(f_{Rabi}) can be calculated from T₂^{Rabi}
- Change MW power to change $f_{Rabi} \Rightarrow Map out S(f)$

Spectral noise: 2 regimes & spectral lines

- >20MHz: S(f) increases $\sim f^2$, possibly heating due to strong drive
- <20MHz: S(f) decreases $\sim 1/f$, quasi-static noise
- Noise peaks at nuclear Lamor frequencies (MM stray field \Rightarrow B_{eff} not parallel to B_{ext})

(a)

2 × 10

10

5 × 104

2×104

 $\propto \int^{-1}$

5 6

Residual charge noise

- S(f) scales with interdot coupling (SEC)
- Large SEC & Feedback: Recover S(f) ~ 1/f as for e.g. Si devices ²/₅
- Charge noise possibly limited by MM

Feedback on

Small SEG

107

106

105

10

10-1

 10^{0} 10^{1} 10^{2} 10^{3} 10^{4}

(d)

10⁵ 10⁶ 10⁷

Frequency / (Hz)

Rabi

spectroscopy

Feedback on

arge SEC

2.0

<u>Summary</u>

- Hyperfine field from nucl. spins can be limiting qubit coherence
- Material systems without nuclear spins or purified exist, e.g. $^{28}{\rm Si}$, here charge noise dominates giving S(f) $\sim 1/{\rm f}$
- Nuclear spins can be decoupled: DNP (stabilize nuclear polarization) CPMG and other decoupling pulses Feedback using Hamiltonian estimation (this paper)
- Decoupling latency (frequency) can be used to study noise spectrum S(f)
- Charge noise seems to be dominating in GaAs as well after decoupling nuclear spins $(S(f) \sim 1/f \text{ recovered})$

