

Interferometry and coherent single-electron transport through hybrid superconductor-semiconductor Coulomb islands

A. M. Whiticar,^{1,*} A. Fornieri,^{1,*} E. C. T. O'Farrell,¹ A. C. C. Drachmann,¹ T. Wang,^{2,3} C. Thomas,^{2,3}
S. Gronin,^{2,3} R. Kallaher,^{2,3} G. C. Gardner,^{2,3} M. J. Manfra,^{2,3,4,5} C. M. Marcus,^{1,†} and F. Nichele^{1,‡}
¹Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen and Microsoft Quantum Lab Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
²Department of Physics and Astronomy and Microsoft Quantum Lab Purdue, Purdue University, West Lafayette, Indiana 47907 USA
³Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 USA
⁴School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 USA
⁵School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 USA
(Dated: February 20, 2019)

Outline

- The System
- The Physics and the Data... Maybe Majoranas
- Conclusion and Outlook

Background

Calculated charge distribution for d = 5 nm

H.J. Suominen et al., PRL **119**, 176805 (2017) J. Shabani et al., PRB **93**, 155402 (2016)

System

- V_{PG} defines the Coulomb island and the interferometer center, as well as controlling the electron occupancy (tunes the chemical potential)
- V_C controls the reference arm resistance, opening or closing the AB loop
- Vector magnet capable of out-of-plane field B_{\perp} and in-plane field B_r , which can rotate about the angle α (tuning between fields parallel and transverse to the wire)

Coulomb Island

(AB interferometer closed)

F. Nichele et al., arXiv:1902.07085 (2019)

Negative Differential Conduction

- At resonance in a superconducting island the current is proportional to the bias. This holds while e⁻ can only travel in pairs.
- At larger bias (above V_{th}) where quasiparticle tunneling is possible, there is an abrupt drop off in current.
- A single e⁻ can tunnel into the SC island, but the escape rate of the particle is different!
- **Any** e^- with $E > E_{th}$ in the normal lead can tunnel in, but **only one** unpaired e^- can tunnel out.
- The tunnel escape rate is determined by the tunnel width of a discrete energy level available to the "odd" e⁻.

F. W. J. Hekking et al., PRL **70**, 4138 (1993)F. Nichele et al., arXiv:1902.07085 (2019)

Reference Arm Connected

0.4

0

• For $B_{\parallel} > 3 T$ (SC driven normal), oscillations reduced comparable to at low parallel field

 $\Delta V_{pg} = 0 \rightarrow V_{pg} = -1.896 V$

0

 ΔV_{pq} (mV)

0.4

0.4

0.4

Oscillation Amplitude (1)

- Compare B_{\parallel} dependence of AB oscillation amp to field dependence of lowest sub-gap state $E_0(B_{\parallel})$
- Sub-gap energy $\langle S \rangle = \langle S_e \rangle \langle S_o \rangle$ found through taking difference between even and odd CB spacings, separately averaged
- Integrated power spectrum gives amplitude $\langle \tilde{A} \rangle$ of oscillations
- $\langle S \rangle$ constant \Leftrightarrow 2e transport until sub-gap state E_0 moves below E_c
 - No overshoot at 2.2 T expected for MZM in long wire

Oscillation Amplitude (2)

- Low fields: CB periodicity $2e \rightarrow \langle \tilde{A} \rangle$ small
- Higher fields $(B_{\parallel} > 2 \text{ T})$: $\langle S \rangle$ approaches zero $\rightarrow \langle \tilde{A} \rangle$ has sharp increase coinciding with 2e to 1e transition
- $B_{\parallel} > 3$ T: SC killed, $\langle \tilde{A} \rangle$ returns to low field regime (2e transport)
- Changing charge occupancy by 1e yields transmission phase shift of π in the 1e regime

In-plane B-field Rotations

- At $\alpha = 0$ discrete state at each charge degeneracy point
- At α = 5 discrete state lifted from zero energy
- At α = 10 no discrete ZBP
- Consistent with MZM, but observation of coherent transport in absence of ZBP suggests trivial quasiparticles are phase coherent across length of island

Oscillation Amplitude (3)

- Peak spacing $\langle S \rangle$ as function of field
- d-f show $\langle \tilde{A} \rangle$ for the three field directions
- Coherent transport observed for all directions
 - ⟨Ã⟩ increases as ⟨S⟩ approaches zero
 → Amplitude dictated by energy E₀ in all directions
 → Interference not unique to parallel B field

Correlating Osc. Amp. To E_0 (Summary)

- Low B field: Coulomb island favors even parity.
 - Transport occurs as two electrons sequentially tunneling on either end of the island
 - Electrons acquire condensate phase while forming a Cooper pair, suppressing single electron coherence
- Moderate field: Discrete sub-gap state brought below E_0
 - single electron transport channel opened
 - Coherent resonant tunneling through island possible
- High field: Island in normal state
 - Reduction of interference interpreted as reflection of short coherence length in the diffusive aluminum wire
- Conclusion: AB interference combined with stable discrete zero-energy states consistent with MZM predictions and <u>excludes</u> contribution of ABS localized at the ends of the wire
- To differentiate between trivial and topological states, stable 1e peak spacing and discrete zero-bias conduction peaks at successive charge degeneracy points must accompany AB interference!

Thanks for your attention!

