

Diana Mahalu

nature physics

ARTICLES PUBLISHED ONLINE: 23 JANUARY 2017 | DOI: 10.1038/NPHYS4010

Edge reconstruction in fractional quantum Hall states

Ron Sabo^{1†}, Itamar Gurman^{1†}, Amir Rosenblatt¹, Fabien Lafont¹, Daniel Banitt¹, Jinhong Park², Moty Heiblum^{1*}, Yuval Gefen², Vladimir Umansky¹ and Diana Mahalu¹

2017

Taras Patlatiuk 16.08.2019

Motivation

- where the current flows in quantum Hall effect
- edge reconstruction
- open questions about edge states for v = 2/3 model

[2] Girvin, Phys. Rev. B **29,** 60126014 (1984)

[3] Kane et al., Phys. Rev. Lett. 72, 41294132 (1994)

[5] Kane et al., Phys. Rev. B 51, 1344913466 (1995)
[5] Meir, Phys. Rev. Lett. 72, 26242627 (1994)
[6] Wang et al., Phys. Rev. Lett. 111, 246803 (2013)

$$t_1 = t_1 \stackrel{D2}{=} 1/2$$

 $L = 0.4 \ \mu m$ $t_{S1 \rightarrow D2} = 1/4$

 $t_{S1 \to D2} = 0$

GaAs-AlGaAs heterostructure $(1.2-2.5) \times 10^{11} \text{ cm}^{-2}$ $(3.9-5.1) \times 10^{6} \text{ cm}^{2} \text{ V}^{-1} \text{ s}^{-1}$

С

v = 2/3

 $L = 9 \,\mu m$

а

1.00

0.75

 $t_1 = 1.0$

 $t_1 = 0.7$

 $t_1 = 0.5$

- $t_{S1 \rightarrow D1}$
- $t_{S1 \to D1} = t_1/2$ for all t_1 once $t_2 = 1/2$
- $t_{S1 \rightarrow D1} = t_1 \times t_2$
- single charge mode
- $t_{S1 \to D1} = 1/2$ for $t_1 \ge 1/2$ once $t_2 = 1/2$
- $t_{S1 \to D1} \approx t_1$ for $t_1 < \frac{1}{2}$ once $t_2 = 1/2$
- two charge channels
- few micrometers equilibration length

 $\begin{array}{l} \mbox{Qualitatively similar} \\ \mbox{to } \nu = 2/3 \end{array}$

GaAs-AlGaAs heterostructure (1.2–2.5) × 10^{11} cm⁻² (3.9–5.1) × 10^{6} cm² V⁻¹ s⁻¹

а

Fabry-Perot interferometer

 $t_{QPC1}, t_{QPC2} \ll 1$ Coulomb blockade peaks

$$t_{QPC1} = t_{QPC2} = 1/2$$

 $t_{FPI} = 1/2$
 $G_{FPI} = 1/3 e^2/h$

- white channel is quantized
- energy aligned with the Fermi energy → backscattering via resonant tunneling
- Coulomb dominated "inner dot"

Noise measurements

 $\begin{array}{l} t_1 = t_1 = 1/2 \\ t_{S1 \to D2} = 0 \end{array} \qquad \qquad \nu = 2/3 \end{array}$

- current did not arrive at D2
- current fluctuations measured in D2 (red crosses)
- noise plots with and without current are similar
- current fluctuations are never observed in integer or particle-like fractional states
- currentless-noise must result from upstream neutral mode(s)

Noise generation

Noise-generating mechanism:

- charge equilibration with generation of neutral excitations ('neutralons')
- fragmentation with stochastic creation of quasi-particle/quasihole pairs

equilibration

Neutralon-induced noise

cold

Conclusion

- model for v = 2/3: two $1/3 e^2/h$ downstream co-propagating edge channels
- equilibrate on a few micrometer length scale
- shot-noise-like fluctuations due to interplay between charge and neutral modes

Noise measurements

- $S = 2qIt(1-t)\alpha(T)$ spectral density $F = S/2eIt(1-t)\alpha(T) = q/e$ - Fano factor
- q partitioned charge

	S1				S2				S3			
	t	F _{exp}	$F_{\rm th}^{(1)}$	$F_{\rm th}^{(2)}$	t	F _{exp}	$F_{\rm th}^{(1)}$	$F_{\rm th}^{(2)}$	t	F _{exp}	$F_{\rm th}^{(1)}$	$F_{\rm th}^{(2)}$
D1	0.5	0.76	2/3	2/3	0.0	0.54	1/3	1/2	0.5	0.51	1/3	1/2
D2	0.0	0.48	1/3	1/2	0.5	0.50	1/3	1/2	0.5	0.66	2/3	2/3
D3	0.5	0.49	1/3	1/2	0.5	0.68	2/3	2/3	0.0	0.40	1/3	1/2

11

