Selective Area Growth of InAs Nanowire Networks

Kris Cerveny FAM talk 04.05.2018

Krizek et al. <u>https://arxiv.org/abs/1802.07808v2</u> (Krogrstrup group) Vaitiekenas et al. <u>https://arxiv.org/abs/1802.04210v2</u> (Marcus group)

Outline

- Their system(s)
- A bit of materials science
- Experiments and results
- Conclusion

Material System (Krizek et al.)

- MBE-grown InAs "wire" networks on GaAs (7% mismatch) and InP (3%) substrates ([001])
- 4 equivalent growth directions enable formation of rectangular networks

Buffer Layer

- Experiment with Sb-dilute buffer layer to improve interface
 - Improves lattice matching and strain relaxation (fewer misfit dislocations)
 - Leads to enhanced field effect response

With and Without Buffer

- Without buffer no devices could completely pinch off
 - Irregular gate responses
- With buffer layer the devices pinch off reliably inside of a ~250 mV window
- Points to different transport phenomena at interface compared to bulk of wires. Better interface → better field effect response
- Sb-dilute buffer layer samples seem to have interface characteristics with no difference to the bulk.
- Greatly reduced hysteresis with buffer layer

Magnetoconductance

- Sweeps of B₁ show Aharonov-Bohm oscillations with oscillation periods in good agreement with the areas of the loops
- Small loop at 20 mK: $l_{\phi} = 13 \pm 1 \ \mu m$
- Diffusive loops have $l_{\phi} \propto T^{-1/2} \rightarrow$ here likely in ballistic regime below 500 mK
- Single (quasi 3D) wire (not shown) fit with WAL model yields $l_{\phi} \sim 180 \text{ nm}$, $l_{\phi} \sim 80 \text{ nm}$; comparable to VLS-grown wires

$$A(T) \propto \exp(-\frac{O}{l_{\phi}(T)})$$

Transport (Vaitiekenas et al.)

- Triangular wires on InP substrates (no buffer layer) in three different devices
- Aiming towards (of course) Majoranas
- Have:
 - Hard superconducting gap induced
 - Large phase coherence length (microns)
 - Strong spin-orbit coupling
 - Coulomb blockade peak motion compatible with interacting Majoranas
- One side of the triangle covered with in-situ MBE aluminum
- Two peaks in G tentatively identified with populations of carriers
 - Larger gap at InAs/Al interface
 - Smaller gap at InAs/InP interface
- Zero-bias G ~ 400 times lower than above-gap G (ratio better than VLS devices) → hard induced gap

Device 1

Device 2

- Hybrid QD of length 1.1 um
- 2e periodic spacing (at low temp) as function of V_g
 - Evolves to even-odd and 1e periodic with increasing T
- Coulomb diamonds give charging energy $E_c = 60 \ \mu eV$ (smaller than induced gap $\Delta^* \sim 100 \ \mu eV$)

For $T \ll E_C, \Delta^*, F \rightarrow \Delta^*$ For $F(T) > E_C$, peaks 2e periodic Above poisoning temp $T_p \sim 250 \ mK, F \rightarrow 0$ For $F(T) < E_C$, odd states occupied

Fitting to complex model yields $\Delta^* = 190 \ \mu eV$

$$S_E - S_O = \frac{2}{\eta e} \min(E_C, F)$$

Evolution of CB Peaks

- Even-odd periodicity at zero bias due to bound state at E_0 less than E_c
- Overshoot in fig (b) indicates discrete subgap state crossing zero energy
 - Yields $g_{eff} \sim 13$
 - Consistent with interacting Majoranas
 - In quantitative agreement with VLS wires of similar length

 $S_{\rm E,O} = \frac{1}{\eta e} \left[E_{\rm C} \pm \min(E_{\rm C}, E_0) \right]$ $= \frac{S_{\rm E} + S_{\rm O}}{2} \left[1 \pm \min(1, E_0 / E_{\rm C}) \right]$

Device 3

- Al layer removed by wet etching
- WAL peak around B=0 yields $l_{\phi}^{WAL} \sim 1.2 \ \mu m$, $l_{SO} \sim 400 \ nm$ (a
- At high magnetic field get AB oscillations of 2.5 mT corresponding to area of 1.7 μm^2 (area of loop)
- Temp dependence AB oscillation amplitude:

$$A_{h/e} \propto \exp\left[-\frac{L}{l_{\phi}^{AB}(T)}\right]$$

For diffusive ring $l_{\phi}^{AB} \propto T^{-1/2}$ yields l_{ϕ}^{AB} (20mK) ~ 4 μm

 It's been argued theoretically^{*} that WAL and AB processes governed by different dephasing mechanisms → different temp dependencies

*T. Ludwig and A. D. Mirlin, Phys. Rev. B. 69, 193306 (2004)

Conclusion

- Useful, scalable system similar to ours
- Interface quality between wires and substrate of high importance
- System allows for lots of flexibility in sample design
- May prove to be attractive long-term for Majorana physics

$$F(T) = k_{\rm B}T \ln \left[\frac{\left(1 + e^{-\Delta^*/k_{\rm B}T}\right)^{N_{\rm eff}} + \left(1 - e^{-\Delta^*/k_{\rm B}T}\right)^{N_{\rm eff}}}{\left(1 + e^{-\Delta^*/k_{\rm B}T}\right)^{N_{\rm eff}} - \left(1 - e^{-\Delta^*/k_{\rm B}T}\right)^{N_{\rm eff}}} \right]$$

Neff, effective number of continuum states, = $2V_{Al}\varrho_{Al}\sqrt{2\Delta^*k_BT}$ ϱ_{Al} : density of states at Fermi energy

Tuominen, M. T., Hergenrother J. M., Tighe T. S., & M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992).