

Konstantin Novoselov

nature nanotechnology

Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures

2014

A. Mishchenko¹, J. S. Tu², Y. Cao², R. V. Gorbachev², J. R. Wallbank³, M. T. Greenaway⁴,
V. E. Morozov¹, S. V. Morozov⁵, M. J. Zhu¹, S. L. Wong¹, F. Withers¹, C. R. Woods¹, Y-J. Kim^{2,6},
K. Watanabe⁷, T. Taniguchi⁷, E. E. Vdovin^{4,5}, O. Makarovsky⁴, T. M. Fromhold⁴, V. I. Fal'ko³,
A. K. Geim^{1,2}, L. Eaves^{1,4} and K. S. Novoselov¹*

Taras Patlatiuk 23.11.2018

- Graphene-based high-frequency electronics
- Tunneling with conservation of energy and momentum
- Negative differential conductance (NDC)

 V_b

 V_{g}

а

Device

-1

0

 $V_{\rm b}(V)$

1

hBN thickness 1.4 nm (four layers)

а

Differential conductance

а

 V_{g}

Differential conductance

Experiment

 V_b

 V_{g}

а

Band structure

 $\theta = \mathbf{t}/\mathbf{0}$

 $\Delta \mathbf{K}_i^{\pm} = \mathbf{l}_z \times \boldsymbol{\theta} \mathbf{K}_i^{\pm}$

6

Magnetic field

$$\hbar \Delta \mathbf{K}_{i}^{\pm} = \mathbf{I}_{z} \times \left[\theta \hbar \mathbf{K}_{i}^{\pm} + e d \mathbf{B}_{\parallel} \right]$$

NDC oscillator

$$f_0 = \frac{1}{2\pi\sqrt{L C_{tot}}} \qquad C_{tot} = 65 \, pF$$

- $f_0 \sim MHz$
- parasitic capacitance limits f₀ (contact pads to Si gate)
- no carrier dwell time limitation
- potentially can operate in *THz* range

*V*amp= 0.5 V

I-V characteristic

CEO wires

Switching

Switching

Hysteresis

Good contacts

 $R_{c2} < R_{c1}$

NDC amplifier

NDC amplifier

NDC amplifier

Conclusion

- Resonant tunneling in graphene
- Hysteresis, amplifications and oscillations based on NDC

Experiment

