#### Engineering Quantum Confinement in Semiconducting van der

#### Waals Heterostructure

K. Wang<sup>1</sup>, T. Taniguchi<sup>2</sup>, K. Watanabe<sup>2</sup>, P. Kim<sup>1\*</sup>

<sup>1</sup>Department of Physics, Harvard University, Cambridge, 02138, MA, US

<sup>2</sup>National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan



Yemliha Bilal Kalyoncu Journal Club 7.4.2017

# $2D TMDC - MX_2$

















1T

● X ● M



## MoS<sub>2</sub>



Κ

Broken inversion symmetry Spin-Orbit Coupling



|                                                            | $MoS_2$ | $MoSe_2$ | WS <sub>2</sub> | $WSe_2$ |
|------------------------------------------------------------|---------|----------|-----------------|---------|
| Band masses (in $m_0$ ) <sup>5</sup>                       | ~0.5    | ~0.6     | ~0.4            | ~0.4    |
| Conduction band spin-orbit splitting (meV) <sup>36</sup>   | ~-3     | ~-20     | ~30             | ~35     |
| Valence band spin-orbit<br>splitting (meV) <sup>5,36</sup> | ~150    | ~180     | ~430            | ~470    |





Spin Hall Effect & Valley Hall Effect

# MoS<sub>2</sub> vdW Stack



2µm

### **Device Characterization**



n-type FET Behaviour Metal-insulator transition

LED shifts threshold from 17 to 22

(10<sup>3</sup> cm<sup>2</sup>/Vs)

2

## **Magnetic Field Measurements**



SdH starting around  $1T \implies$  mobility of 10.000 cm<sup>2</sup>/Vs

SdH peak near 3T develops into 2peaks  $\implies$  partial symmetry breaking (?)

Full symmetry breaking of levels Complex valley-spin dynamics near band edges Possible formation of parallel 2DEGS



#### Quantized Conductance in QPC



Control device with split gates  $\rightarrow$  Multiple quantized conductance steps



## **Summary**

