Ş

Thermal Conductance of a Single-Electron Transistor

B. Dutta,¹ J. T. Peltonen,² D. S. Antonenko,^{3,4,5} M. Meschke,² M. A. Skvortsov,^{3,4,5} B. Kubala,⁶ J. König,⁷ C. B. Winkelmann,¹ H. Courtois,¹ and J. P. Pekola²

¹Université Grenoble Alpes, CNRS, Institut Néel, 25 Avenue des Martyrs, 38042 Grenoble, France

²Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science,

P.O. Box 13500, 00076 Aalto, Finland

³Skolkovo Institute of Science and Technology, Skolkovo, 143026 Moscow, Russia

⁴L. D. Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia

⁵Moscow Institute of Physics and Technology, Moscow, 141700, Russia

⁶Institute for Complex Ouantum Systems and IOST, University of Ulm, 89069 Ulm, Germany

⁷Theoretische Physik and CENIDE, Universität Duisburg-Essen, 47048 Duisburg, Germany

(Received 11 April 2017; published 15 August 2017)

Yemliha Bilal Kalyoncu FAM 17.11.2017

Wiedemann-Franz Law

$$\frac{\kappa}{\sigma} = L_0 T$$

$$L_0 = \frac{\pi^2 k_b^2}{3e^2} = 2.44 \times 10^{-18} \text{W}\Omega\text{K}^{-2}$$

Validity: limiting process

- High temperatures : Phonon scattering ----Deviations----
- Low temperatures : Impurity scattering

Single Electron Transistor

SET Device with NIS Thermometry

Inverse Proximity Effect*

Large ground plane : Au(30nm)

 Cu 30nm for A (164 kΩ) 45nm for B (52 kΩ)
Al 20nm in-situ oxidation
Cu 30nm

Red = charge transport Black = heat transport

* Koski J.V., et al., Laterally proximized aluminum tunnel junctions, Appl. Phys. Lett. 98, 206501 (2011)

T_e vs **T**_b : Overheating and Cooling

*Nahum M. et al., Electronic microrefrigerator based on a NIS tunnel junction, APL, 65, 3123 (1994)

Analysis

Violation of Wiedemann-Franz Law

Conclusion

Thermal conductance of SET is investigated

Validity of Wiedemann-Franz Law is tested

NIS Thermometry is used

Thermal conductance depends on the SET state

Vioaltions of Wiedemann-Franz Law

