Concepts in Mesoscopic Physics

Drude Conductivity

$$\sigma = en\mu = \frac{ne^2\tau_m}{m^*}$$

rewrite using
$$k_F=\sqrt{2\pi n}$$

$$\ell=v_F\tau_m$$

$$v_F=\frac{\hbar k_F}{m^*}$$

$$\sigma = g_s g_v \frac{e^2}{h} \frac{k_F \ell}{2} = \frac{2e^2}{h} \frac{k_F \ell}{2}$$

rewrite using

$$\rho_{DOS} = \frac{g_s g_v m^*}{2\pi\hbar^2} = \frac{m^*}{\pi\hbar^2}$$

$$D = \frac{1}{2}v_F^2 \tau_m = \frac{1}{2}v_F \ell$$

$$\sigma = e^2 \rho_{DOS}(E)D$$

Resistance per Square

2D: resistivity and resistance: same units

$$R = \rho \frac{L}{W} = \rho \, \square \frac{L}{W}$$

 ρ resistance per square

example: Hall bar

Femi wavelength λ_F

$$\lambda_F = 2\pi/k_F = \sqrt{2\pi/n}$$

Typically,
$$n \sim 2 \times 10^{11} \, \mathrm{cm}^{-2} = 2 \times 10^{15} \, \mathrm{m}^{-2}$$
 $\lambda_F \sim 56 \, \mathrm{nm}$ $E_F \sim 7 \, \mathrm{meV}$ $\lambda_F \sim 56 \, \mathrm{nm}$ $\lambda_F \sim 56 \, \mathrm{nm}$

meV

Fermi-Dirac distribution

$$\frac{1}{e^{(E-E_F)/kT}+1}$$

Fermi-Dirac distribution for several temperatures

Mean free path ℓ

$$\mu = 100\,\mathrm{m^2/(Vs)} = 1'000'000\,\mathrm{cm^2/(Vs)}$$

$$\tau_m = 38\,\mathrm{ps}$$

diffusion constant $D = \frac{1}{2}v_F^2 \tau_m$

$$\ell = v_F \tau_m = v_F \mu \frac{m^*}{e}$$

$$\ell = 7.4\,\mu\mathrm{m}$$

$$D=0.72\,\mathrm{m^2/s}$$

diffusive $\ell \ll L$

Phase coherence time τ_{φ}

interference
$$|A_1 + A_2|^2 \sim Re \exp (ik_F(L_1 - L_2) + i(\varphi_1 - \varphi_2))$$

phase coherence length L_{φ}

interference suppressed to 1 / e $\exp(-L/L_{\varphi})$

phase coherence time τ_{φ}

$$L_{arphi}=v_{F} au_{arphi}$$
 ballistic $L_{arphi}=\sqrt{D au_{arphi}}$ diffusive

due to interactions... $\varphi(t)$ randomized

$$\langle \varphi \rangle_t = \int_0^t \varphi(\tau) d\tau \sim 0$$

 $\langle \exp(i\varphi(\tau)) \rangle_t \sim \exp(-t/\tau_\varphi)$

quasi one-dimensional $L \ll L_{\varphi}$

Phase coherence time τ_{φ}

finite due to coupling of electrons to environment: dynamic scattering mechanisms

- electron phonon scattering
- electron electron scattering
 - a) large energy exchange
 - b) quasi elastic scattering (Nyquist mechanism)
- spin flip scattering (magnetic impurities)
- electron photon scattering
- etc

$$\tau_{\varphi} = \tau_{\varphi}(T)$$

Phase coherence time τ_{φ}

e-e direct

$$\tau_{ee}^{-1} = \frac{\pi}{4} \frac{(k_B T)^2}{\hbar E_F} \ln \frac{E_F}{k_B T}$$

e-e quasi-elastic (Nyquist)

$$\tau_{\phi N}^{-1} = \frac{k_B T}{2\pi\hbar} \frac{\lambda_F}{\ell_e} \ln \frac{\pi \ell_e}{\lambda_F}$$

e-phonon: small (T < 1K)

${f Thermal\ length}\ L_T$: thermal smearing

Interaction parameter r_S

ratio of Coulomb energy to kinetic energy

$$r_S = \frac{e^2}{4\pi\epsilon_0\epsilon r} \div E_F = \frac{e^2m^*}{\epsilon\epsilon_0h^2} \frac{1}{\sqrt{n}} \sim 0.7$$

characterizes "strength" of electron interactions

non interacting weakly interacting
$$r_s
ightarrow 0$$

strongly interacting
$$r_s \gtrsim 1$$

Magnetic Length ℓ_B

$$\phi_0=rac{h}{e}$$
 flux quantum

magnetic flux = $A \cdot B = L^2 \cdot B$

$$\ell_B = \sqrt{\frac{\hbar}{eB}}$$

Thouless Energy

crossing time: L/v_F

Thouless energy: $E_T = \frac{\hbar V_F}{L}$

$$E_T = \frac{\hbar V_F}{\sqrt{A}}$$

TABLE I Electronic properties of the 2DEG in GaAs-AlGaAs heterostructures and Si inversion layers.

		GaAs(100)	Si(100)	Units
Effective Mass	m	0.067	0.19	$m_{\rm e} = 9.1 \times 10^{-28} \rm g$
Spin Degeneracy	$g_{ m s}$	2	2	
Valley Degeneracy	$g_{ m \scriptscriptstyle V}$	1	2	
Dielectric Constant	arepsilon	13.1	11.9	$\varepsilon_0 = 8.9 \times 10^{-12} \mathrm{Fm}^{-1}$
Density of States	$\rho(E) = g_{\rm s}g_{\rm v}(m/2\pi\hbar^2)$	0.28	1.59	$10^{11} \mathrm{cm}^{-2} \mathrm{meV}^{-1}$
Electronic Sheet Density a	$n_{ m s}$	4	1–10	$10^{11} \mathrm{cm}^{-2}$
Fermi Wave Vector	$k_{\rm F} = (4\pi n_{\rm s}/g_{\rm s}g_{\rm v})^{1/2}$	1.58	0.56 – 1.77	$10^6 \mathrm{cm}^{-1}$
Fermi Velocity	$v_{ m F}=\hbar k_{ m F}/m$	2.7	0.34 – 1.1	$10^7\mathrm{cm/s}$
Fermi Energy	$E_{\rm F} = (\hbar k_{\rm F})^2 / 2m$	14	0.63 - 6.3	meV
Electron Mobility a	$\mu_{ m e}$	$10^4 - 10^6$	10^4	${ m cm}^2/{ m Vs}$
Scattering Time	$ au = m \mu_{ m e}/e$	0.38 – 38	1.1	ps
Diffusion Constant	$D = v_{\rm F}^2 \tau / 2$	140-14000	6.4 – 64	cm^2/s
Resistivity	$\rho = (n_{\rm s}e\mu_{\rm e})^{-1}$	1.6 – 0.016	6.3 – 0.63	$\mathrm{k}\Omega$
Fermi Wavelength	$\lambda_{ m F} = 2\pi/k_{ m F}$	40	112 - 35	nm
Mean Free Path	$l = v_{ m F} au$	$10^2 - 10^4$	37–118	nm
Phase Coherence Length ^{b}	$l_{\phi} = (D\tau_{\phi})^{1/2}$	200	40-400	$nm(T/K)^{-1/2}$
Thermal Length	$l_{\mathrm{T}} = (\hbar D/k_{\mathrm{B}}T)^{1/2}$	330-3300	70 – 220	$nm(T/K)^{-1/2}$
Cyclotron Radius	$l_{ m cycl}=\hbar k_{ m F}/eB$	100	37–116	$nm(B/T)^{-1}$
Magnetic Length	$l_{\rm m} = (\hbar/eB)^{1/2}$	26	26	$nm(B/T)^{-1/2}$
	$k_{ m F} l$	15.8 - 1580	2.1 – 21	
	$\omega_{ m c} au$	1 - 100	1	(B/T)
	$E_{ m F}/\hbar\omega_{ m c}$	7.9	1–10	$(B/T)^{-1}$

Classical Hall Effect

2D: thickness t drops out

 $\begin{pmatrix} \frac{m^*}{e\tau_m} & -B \\ +B & \frac{m^*}{e\tau_m} \end{pmatrix} \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} E_x \\ E_y \end{pmatrix}$

$$\frac{m^* v_d}{\tau_m} = e \left[E + v_d \wedge B \right]$$

$$\rho_{xx} = \sigma^{-1}, \quad \rho_{xy} = -\rho_{yx} = -\frac{B}{en}$$

Classical Hall Effect

$$V_x = R_{xx}I_x \qquad R_{xx} = \frac{L}{W}\rho_{xx}$$

$$V_H = V_y = \rho_{yx}I_x = \frac{B}{en}I_x = R_HI_x$$

 $R_H = B/(en)$

 $R_H \sim 3.1 \, \mathrm{k}\Omega/\mathrm{Tesla}$ for $n \sim 2 \times 10^{-11} \, \mathrm{cm}^{-2}$

$$\mu = (neR_{xx}W/L)^{-1}$$

Quantum Hall Effect

Phenomenological Treatment

Lorentz-Force $F = ev \times B$ zentrifugal force $m\omega^2 r$

$$evB = m\omega^2 r$$

$$\omega_c = \frac{eB}{m^*}, \quad r_c = \frac{v}{\omega_c}$$

cyclotron frequency, radius

$$\hbar\omega_c = (1.73 \,\mathrm{meV/Tesla})$$
 $1 \,\mathrm{meV}/k_B = 11.6K$

quantization condition: circumference = N $\lambda_{\rm F}$ \longrightarrow $E_n = n \frac{1}{2} \hbar \omega_c$

$$E_n = n \frac{1}{2} \hbar \omega_c$$

Quantum Hall Effect

density of states

$$\rho_{DOS}(E, B) = N_0 \sum_{n=0}^{\infty} \delta \left(E - (n + 1/2) \hbar \omega_c \right)$$

 N_0 number of states per area in each Landau level

Quantum Hall Effect

all zero field states within range in energy of $\hbar\omega_c$ condense in one Landau level

$$N_0 = \hbar \omega_c \times (m/(\pi \hbar^2)) = 2eB/h.$$

Landau level filling factor

$$\nu = \frac{n}{2eB/h}$$

number N of Landau levels with $E < E_F$: integer

Quantum Hall Effect: Transport

v = N: scattering possible, resistance

Quantum Hall Effect: Transport

 $v \Leftrightarrow N$: scattering NOT possible, ZERO resistance (ρ_{xx})

$$\hbar\omega_c \gg kT$$

Quantum Hall Effect: B dependence

Integer Quantum Hall Effect

$$R_H = \frac{1}{g_s g_v} \frac{h}{e^2} \frac{1}{N} = \frac{h}{2e^2} \frac{1}{N}$$

Quantum Hall Effect: edge states / skipping orbits

Shubnikov-de-Haas Oscillations

$$\hbar\omega_c > kT, \hbar/\tau_m$$

orbital Landau levels

$$g\mu_B B > kT, \hbar/\tau_m$$

spin polarized Landau levels

Quantum Mechanical Treatment

$$\left[\frac{(i\hbar\nabla + eA)^2}{2m^*} + U(y)\right]\psi(x,y) = E\psi(x,y)$$

$$A = -\hat{x}By \rightarrow A_x = -By \text{ and } A_y = 0.$$

three cases:

- free electrons in magnetic field (U = 0)
- confined, B = 0 (constriction, QPC)
- confined and in magnetic field

$$\left[\frac{(i\hbar\nabla + eA)^2}{2m^*} + U(y)\right]\psi(x,y) = E\psi(x,y)$$

$$p_x = -i\hbar \frac{\partial}{\partial x}$$
 and $p_y = i\hbar \frac{\partial}{\partial y}$

$$\left[\frac{(p_x + eBy)^2}{2m^*} + \frac{p_y^2}{2m^*} + U(y) \right] \psi(x, y) = E\psi(x, y)$$

$$\psi(x,y) = \frac{1}{\sqrt{L}} \exp(ikx)\chi(y)$$

$$\left[\frac{(\hbar k + eBy)^2}{2m^*} + \frac{p_y^2}{2m^*} + U(y) \right] \chi(y) = E\chi(y)$$

Free electrons in a magnetic field

$$U \equiv 0$$

$$\left[\frac{p_y^2}{2m^*} + \frac{1}{2}m^*\omega_c^2(y+y_k)^2\right]\chi(y) = E\chi(y)$$

harmonic oscillator

$$y_k = \frac{\hbar k}{eB}$$
 and $\omega_c = \frac{eB}{m^*}$

... textbook ...

$$E(n,k) = \left(n + \frac{1}{2}\right)\hbar\omega_c, \quad n = 0, 1, 2, \dots$$

zero point energy pure quantum effect no classical analog

Electrons Confined in a Constriction

$$U = 1/2m^*\omega_0^2 y^2$$

$$\left[\frac{\hbar^2 k^2}{2m^*} + \frac{p_y^2}{2m^*} + \frac{1}{2} m^* \omega_0^2 y^2 \right] \chi(y) = \chi(y)$$

... textbook ...

$$E(n,k) = \frac{\hbar^2 k^2}{2m^*} + \left(n + \frac{1}{2}\right) \hbar \omega_c, \quad n = 0, 1, 2, \dots$$

$$V_{sd} = (\mu_s - \mu_d)/e$$

$$v(n,k) = \frac{1}{\hbar} \frac{\partial E(n,k)}{\partial k} = \frac{\hbar k}{m^*}$$

as for free electrons

Transport through a Constriction

$$I = e \sum_{n=1}^{N} \int_{\mu_d}^{\mu_s} dE \frac{1}{2} \rho_n(E) v_n(E) T_n(E)$$

$$\rho_n(E) = 2/\pi (dE_n/dk_x)^{-1}$$
 1D density of states

$$T_n(E)$$

transmission probability of the nth subband

$$I = e \sum_{n=1}^{N} \int_{\mu_d}^{\mu_s} dE \frac{1}{2} \frac{2}{\pi} \left(\frac{\partial E_n}{\partial k_x} \right)^{-1} \frac{1}{\hbar} \frac{\partial E_n}{\partial k_x} T_n(E_F)$$

$$= \frac{2e}{h} \sum_{n=1}^{N} T_n(E_F) \int_{\mu_d}^{\mu_s} dE$$

$$= \frac{2e}{h} \sum_{n=1}^{N} T_n(E_F) eV_{sd}.$$
QUANTIZED!!

Transport through a Constriction: Conductance Quantization

$$G = \frac{2e^2}{h} \sum_{n=1}^{N} T_n(E_F) \qquad \sum_{n=1}^{N} T_n(E_F) = 1$$

$$G = \frac{2e^2}{h}N.$$

Landauer – Büttiker Formalism

matrix t

$$T_n(E_F) = \sum_{m=1}^{N} |t_{mn}|^2$$
 two-terminal

$$T_{\alpha \to \beta} = \sum_{n=1}^{N_{\alpha}} \sum_{m=1}^{N_{\beta}} |t_{\beta \alpha, mn}|^2 \quad multi \ terminal$$

greek: leads roman: modes

 $t_{\beta\alpha,mn}$ transmission probability amplitude from mode n in lead α to mode m in lead β

$$G = \frac{2e^2}{h} \sum_{n=1}^{N} T_n(E_F) = \frac{2e^2}{h} \sum_{n,m=1}^{N} |t_{mn}|^2 = \frac{2e^2}{h} \operatorname{Tr} \mathbf{t} \mathbf{t}^{\dagger}$$