
Chapter 2

Semiconductor Surfaces and
Interfaces

The experiments that we will focus on here are using nanoscale devices formed in 2D
electron gases in GaAs/AlGaAs heterostructures, consisting of several layers that are
brought into contact at interfaces. Surfaces and interfaces therefore play a very important
role and are the topic of this chapter.

At the surface of a semiconductor crystal to vacuum, the bands of the solid get related
to the vacuum energy level. It takes a finite amount of energy to remove electrons from
the crystal to the vacuum, since formation of the crystal from far separated atoms lowered
the energy. The work function ΦA is the energy to transfer one electron at the chemical
potential from the crystal into the vacuum. In pure semiconductors and in insulators,
there are no states at the chemical potential. Hence, the electron affinity χe is introduced
as the energy difference from the bottom of the conduction band to the vacuum energy
level. Both the affinity and the work function are dependent on the bulk crystal/material
properties.

2.1 Electronic Surface States

The periodic pattern of chemical bonds in the crystal is interrupted at the surface, resulting
in unsaturated (dangling) bonds, which can rearrange themselves (surface reconstruction)
and/or which might be saturated by a (mono)layer of adatoms (sometimes oxygen). This
results in a change of both the surface crystal structure and the allowed energies that
depend sensitively on the materials and bulk crystal structures involved. Often, the elec-
tronic surface structure has little to do with the bulk structure. The surface states can
be probed, for example with scanning tunneling techniques or with photo emission spec-
troscopy. For simplicity, we consider here the case without surface reconstruction and
without passivation, assuming essentially the perfect periodic crystal is simply cut off in
a plane. This will give a qualitatively correct picture.

While not giving a derivation here, a simple motivation for formation of electronic
surface states goes as follows: Bloch’s theorem in principle allows the wave vector in the
wave function ψk(r) = eik·ruk(r) to be a complex number. An imaginary wave vector cor-
responds to an exponentially damped wave function, an “evanescent wave”. In an infinite,
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perfect crystal, that is not physical, since it would specify a special location in the crys-
tal, violating periodicity or translational symmetry. But the surface breaks translational
symmetry, therefore allowing wave vectors with nonzero imaginary component. It can be
shown that the resulting states are localized at the surface, with a wave function amplitude
that decays exponentially over a few lattice constants when going from the surface into
the bulk. It turns out that the energies of these states are usually located inside the band
gap, forming a separate band of surface states (see figure 2.1).
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Figure 2.1: Band structure at the surface of an intrinsic semiconductor (A, left), n-doped semiconductor
before (B, middle) and after (C, right) equilibration. Gray indicates occupied states. To match chemical
potentials at the surface and in the bulk, charge builds up on the surface depleting the donor charges a
depth into the bulk and bending the bands accordingly.

The number of surface states per area is essentially given by the number of atoms per
area at the surface. These states can be comprised of states that in the infinite, boundary
less crystal would have contributed to either the conduction or the valence bands and
can be an admixture of both types of bands. Due to charge neutrality, in the case of
the intrinsic semiconductor the number of filled surface states is equal to the number of
electrons that were removed from the bulk valence band due to surface formation, resulting
in a neutral, uncharged surface. The remaining surface states are empty. Filled surface
states have electrons that in principle could be given into empty available states and can
therefore be considered donor-like states. Vice-versa: empty surface band states are called
acceptor-like. The energy up to which the surface states (within the surface band) are filled
in the intrinsic, un-doped semiconductor is dictated by charge neutrality and is sometimes
referred to as the charge neutrality level or charge neutrality chemical potential µCN .
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2.2 The Semiconductor-Vacuum interface

For a surface of a doped semiconductor, electrons occupying the conduction band (orig-
inating from the dopants) can lower their energy by filling empty surface band states (if
available, which is often the case). This gives a net surface charge nS (charge per area, in
this case negative) which is balanced to maintain charge neutrality by a region inside the
crystal of equal total charge of opposite sign (positive)—referred to as depletion region.
The charge in the depletion region is due to holes left behind from conduction band elec-
trons that dropped into the surface band. The surface charge nS is located within a few
lattice constants around the surface, forming a 2D electron gas. The dopant density is to
some extent arbitrary and can be externally controlled. It is often chosen by various other
considerations, see the heterostructure section, usually resulting in a dopant density that
is much lower than the available surface states, typically of the order of one dopant atom
for every 10’000 crystal atoms. Therefore, this results a depletion region that can reach
many lattice constants into the bulk.

2.2.1 Band bending

For a bit more quantitative consideration, let zdep denote the extent of the depletion region
into the bulk starting from the surface at z = 0 (see figure 2.1) and ND the dopant density
(per m3). All donors are ionized in the depletion region giving a space charge density of
ρ = eND. The Poisson equation for the z-dependence of the potential V (z) within the
depletion region 0 ≤ z ≤ zdep is

d2V

dz2
= −e2ND

εε0
⇒ V (z) = −e2ND

2εε0
(z − zdep)2, (2.1)

where the normalization of V was chosen as V = 0 in the bulk (for z > zdep) and the
constant of integration was chosen to match V (zdep) = 0 accordingly. According to
Eq. 2.1, the bands are therefore bending quadratically, with a total shift of V (z → 0+) =
−e2NDz2

dep/(2εε0). More generally, the local curvature of a band is proportional to the
local space charge density, according to Eq. 2.1. At the surface z = 0, V(z) will jump
(over the narrow extent of the surface charge accumulation layer), due to the charge nS

accumulated strongly localized at the surface. This is not indicated in figure 2.1 since
it is very narrow compared to the depth zdep of the depletion region. The surface accu-
mulation charge is of equal size but opposite sign as the total depletion region charge:
nS = −NDzdep (charge neutrality) and creates a further change in V that we neglect. In
this approximation, the bands have bent by a total amount of ∆V = V (0).

At the surface, the chemical potential is in the surface band (since that band is partly
filled for sufficiently low doping density), and the surface band energy and width depends
on material properties. In the bulk, the chemical potential is in the gap, usually closer to
the conduction band (again, depending of the doping density). However, in equilibrium,
the chemical potential has to be the same everywhere, and in particular needs to be the
same at the surface and in the bulk. This condition therefore dictates the value of ∆V , i.e.
the amount by which the bands need to bend, originating from the material dependent
surface properties, and therefore determines the depletion depth zdep.
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2.2.2 Fermi Level pinning

To make an example, let’s assume that the surface band is centered in the middle of the
gap, with a width of a fraction of the gap size, and is half filled in the intrinsic material.
Doping will fill the surface band slightly more. Let’s take the case of GaAs with gap
Eg = 1.4 eV, a typical doping of ND = 1024m−3 (corresponding to about 1 dopant for
every 104 crystal atoms, or about 1 dopant for every 20 atoms along a crystal axis). Then,
∆V ∼ Eg/2, and with ε ∼ 13 and using

zdep =
√

2εε0∆V

e2ND
(2.2)

it follows that zdep ∼ 30 nm, or about 60 lattice constants. This results in a surface charge
of nS = zdepND ∼ 3 × 1016m−2, much smaller than the total surface density of states
∼ 2/a2

0 ∼ 6× 1018m−3, with lattice constant a0 ∼ 5.5Å. Therefore, the chemical potential
µS at the surface is essentially independent of the doping level (at least for typical doping
densities as above). One says that the Fermi level is pinned at the surface. Particularly
considering that the surface atoms make up a very small fraction of the total number
of atoms in the crystal, the role of the surface is quite important. Also, note that the
depletion depth zdep can be changed with the dopant density as formulated in Eq. 2.2.

2.3 Metal-Semiconductor Interface: Schottky Barrier

One important type of interface is the one between a metal and a semiconductor. Among
various possible scenarios depending on the respective alignment of the bands and chemical
potentials, two important cases are the Schottky barrier and Ohmic contacts. If a Schottky
barrier forms, charge can move from the metal into the semiconductor only by tunneling
through a barrier; we first discuss this situation. The most relevant case is the situation
when the chemical potential in the conduction band of the metal lies inside the gap of
the semiconductor. At the interface, it can be shown that presence of the metal creates
induced gap states (IGS) within the gap of the semiconductor, as shown in figure 2.2A,
displaying the interface before before charge transfer occurred.

Let’s start with this situation and let’s further assume an intrinsic (undoped) semi-
conductor. The common energy scale is clearly the vacuum energy level. In general, the
chemical potential in the metal µM is not aligned with either the surface chemical poten-
tial µS nor the bulk semiconductor chemical potential µSC , but often one finds µM ≥ µS .
Now we allow charge transfer. Electrons from the metal can lower their energy by filling
empty surface states, thereby leaving behind holes in the metal. A charge dipole located
at the interface results and aligns µM and µS , via the dipole potential obeying the Poisson
equation, similar to Eq. 2.1, and corresponding band bending in the semiconductor by
an amount ∆µ = µM − µS . This dipole and band bending is strongly localized at the
surface since the surface states decay exponentially over a few lattice constants into the
bulk semiconductor. The chemical potential µM of the metal is essentially unchanged,
since the number of available electrons in the bulk metal is very large compared to the
necessary number of electrons to fill the surface states up to µM . The resulting situation
is depicted in figure 2.2B.

In an intrinsic semiconductor, the entire system is then in a thermodynamic equilib-
rium, since in the intrinsic case µSC = µS . In a doped semiconductor, however, there is
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Figure 2.2: Band structure of a metal-semiconductor interface before (left, A) and after (partial) charge
transfer (right, B). Shown here is case where the chemical potential of the metal is situated inside the
semiconductor gap, which results in a Schottky barrier VS increased by ∆µ = µM − µS due to surface
charge accumulation when the bands bend to match µM = µS . IGS denotes induced gap states. For
an intrinsic semiconductor, µSC = µS , and B represents thermodynamic equilibrium. For the doped
semiconductor µSC 6= µS and further charge is transferred, as detailed in Figure 2.3.

still a miss-match µS 6= µSC . By a further charge transfer of donor electrons onto the
surface and corresponding band bending, µS = µSC will be achieved, directly analogous
to the situation described before for the semiconductor-vacuum interface, resulting in the
band diagram in figure 2.3.
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Figure 2.3: Band structure of a metal-semiconductor interface where the semiconductor is doped and
the system in in thermodynamic equilibrium (left, A). The right panel shows a simplified view omitting
the semiconductor surface. VS denotes the Schottky barrier.

2.3.1 Schottky Barrier and Model

To transfer electrons from the metal into the bulk semiconductor, a barrier of energy
VS = ΦM − χe + ∆µ—the Schottky barrier—has to be overcome (see figure 2.2 and 2.3),
which was increased by ∆µ due to the surface charge accumulation. The Schottky barrier
height VS depends on the (often complicated and difficult to calculate) surface properties
via the surface chemical potential µS in ∆µ = µM−µS , while the metal work function ΦM
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and the electron affinity in the semiconductor χe are bulk parameters. The Schottky model
neglects the surface effects and takes VS = ΦM − χe. This is equivalent to arguing that
removing electrons with affinity χe from the semiconductor and adding them to the metal
with work function ΦM will lead to a depletion region in the semiconductor establishing
equilibrium and forming a barrier of height VS = ΦM−χe. A corresponding band diagram
is shown in Figure 2.4 together with some measured barrier heights for metals on GaAs
and Si.

Figure 2.4: Schottky barrier height of Si and GaAs in contact with different metals as a function of the
metal work function. From Sze, 1985.

2.3.2 Schottky diode

The metal-semiconductor interface with a Schottky barrier acts as a diode, the Schottky
diode, which has been discussed at length in the literature. Suffice it here to state that
conduction through this diode depends on the tunneling current through the barrier, which
varies exponentially with barrier width and height. Applying a voltage V to the metal
with respect to the grounded semiconductor changes the chemical potential of the metal
and therefore can be used to control the barrier, resulting in an the exponential I-V curve
of a diode. A positive Voltage will reduce the barrier height (and therefore also the barrier
width) via VS = ΦM − eV − χe. When a Voltage of V ∼ VS is applied, large currents
will flow. Typical Schottky barrier heights for metals on GaAs are about 0.8 eV. On the
other hand, the currents can be extremely small for negative voltages, corresponding to
the diodes reverse bias direction, and the resulting current is called leakage current.

Figure 2.5: I-V characteristic of the Schottky diode. (from Heinzel)
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Figure 2.6: left: Schottky barriers under a) no bias, b) forward bias (V > 0) and c) reverse bias
(V < 0). Also indicated are various electron currents components in a Schottky barrier: j1e and j3e are
injection currents, which are thermally driven/excited, j2e is the tunneling current. At low temperatures,
the termionic currents can be neglected. [Look 1988]




