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Strong Coupling between a photon and a 
hole spin in silicon



Abstract
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Background
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▪ Strong coupling between qubit and resonator when 𝜔𝑟 = 𝜔𝑞

▪ Formation of hybridized states separated in energy by coupling strength 𝑔

▪ Signature: vacuum Rabi splitting (𝑔 > 𝜅, 𝛾)

A. Blais et. al., Rev. Mod. Phys. 93, 025005 (2021)



Background
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• Strong coupling previously demonstrated for electrons in Si/SiGe

• Micromagnet required for coupling spin to E-field of resonator

• Here: use intrinsically present spin-orbit interaction for holes in Si 

N. Samkharadze et. al., Science, 359, 6380 (2018)

X. Mi et. al., Nature, 555, 599 (2018)



Device Architecture
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▪ Resonator and DC lines fabricated from NbN on 

packaging oxide 

▪ λ/2 CPW hanger resonator with bias tap

▪ DC lines with LC lowpass filters fc = 1.2 GHz (L

= 123 nH, C = 0.134 pF)

▪ Connections to NbN circuitry through W 

interconnects

▪ G3, G4 shorted at device level

▪ Source hard grounded to NbN ground plane 

▪ DQD defined under G1, G2 • 𝑓𝑟= 5.428 GHz
• 𝑄int= 530
• 𝑄ext= 1550



Resonator – DQD Charge Coupling
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From χc(T): 

gc
2𝜋

= 513 MHz

tc
2𝜋

= 9.57 GHz 



Strong Hole Spin-Photon Coupling 
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linewidth: 
1

2
𝛾𝑠 +

𝜅

2
/2𝜋 = 7 MHz

Cavity decay rate: 𝜅/2𝜋 = 14 MHz

Extracted spin decoherence: 𝛾𝑠/2𝜋 = 7 MHz  



Spin-Photon Coupling vs. Magnetic Field Orientation
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Maximum 𝑔𝑠=330 MHz at 3º 

Minimum 𝑔𝑠=10 MHz at 79º

Model:

𝑔𝑠 near maximum when 𝑩⊥ 𝑩𝑠𝒐
(not exactly orthogonal due to g-matrix 

anisotropy)

𝑩𝑠𝒐 mostly in-plane perpendicular 

to nanowire 

𝑔𝑠 ∝ 𝑔𝑐 ҧ𝑔𝑩 × ( ҧ𝑔𝑩𝑠𝑜)

ҧ𝑔 is average g-tensor of the two dots 

Angle between B and nanowire axis 

B-field > 1 T 
required 
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Spin-Photon Coupling in Single Dot Limit 

𝑔𝑠
(𝑅)

= 1.16 𝑀𝐻𝑧

𝑔𝑠
(𝐿)

= 0.66 𝑀𝐻𝑧



Conclusion / Future work 
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• Spin-photon coupling largely exceeds results for electrons in Si

• Modified layout and resonator optimization to increase charge photon 
coupling and reduce resonator losses (aim: < 1 MHz)

• Implementation of spin-photon coupling schemes relying on charge 
noise sweet spots



Spin-Charge Mixing 
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Resonator
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C. Yu et. al., Appl. Phys. Lett. 118, 054001 (2021)



Charge Stability Diagram
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Charge-Photon Coupling Characterisation
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Zero detuning:



Detuning Field Maps 
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Angular Dependence Spin-Photon Coupling
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Resonance Field 



Angular Dependence Spin-Photon Coupling
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Resonance Field 



Angular Dependence of 𝛾𝑠 and 𝜅
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Anisotropy of g-Factors and Tunnel Couplings
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Theory of Angular Dependence Spin-Photon Coupling 
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Transform Hamiltonian with diagonalization of Zeeman term:



Theory of Angular Dependence Spin-Photon Coupling 
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Transform Hamiltonian with diagonalization of Zeeman term (assuming left and right g-matrices 
are the same):

Introduce Effective Spin-Orbit Field:

When average Zeeman energy for both dots is << 2tc:


