# Strong Coupling between a photon and a hole spin in silicon

Cecile X. Yu<sup>1,\*</sup>, Simon Zihlmann<sup>1,\*</sup>, Jose C. Abadillo-Uriel<sup>2</sup> Vincent P. Michal<sup>2</sup>, Nils Rambal<sup>3</sup>, Heimanu Niebojewski<sup>3</sup>, Thomas Bedecarrats<sup>3</sup>, Maud Vinet<sup>3</sup>, Etienne Dumur<sup>1</sup>, Michele Filippone<sup>2</sup>, Benoit Bertrand<sup>3</sup>, Silvano De Franceschi<sup>1</sup>, Yann-Michel Niquet<sup>2</sup>, and Romain Maurand<sup>1</sup>

<sup>1</sup>Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France. <sup>2</sup>Univ. Grenoble Alpes, CEA, IRIG-MEM-L Sim, Grenoble, France. <sup>3</sup>Univ. Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France

Eoin Kelly 22/08/2022



#### **Abstract**

2

Spins in semiconductor quantum dots constitute a promising platform for scalable quantum information processing<sup>1</sup>. Coupling them strongly to the photonic modes of superconducting microwave resonators would enable fast non-demolition readout and long-range, on-chip connectivity, well beyond nearest-neighbor quantum interactions<sup>2-4</sup>. Here we demonstrate strong coupling between a microwave photon in a superconducting resonator and a hole spin in a silicon-based double quantum dot issued from a foundry-compatible MOS fabrication process. By leveraging the strong spin-orbit interaction intrinsically present in the valence band of silicon<sup>5,6</sup>, we achieve a spin-photon coupling rate as high as 330 MHz largely exceeding the combined spinphoton decoherence rate. This result, together with the recently demonstrated long coherence of hole spins in silicon<sup>7</sup>, opens a new realistic pathway to the development of circuit quantum electrodynamics with spins in semiconductor quantum dots.



$$\hat{H}_{
m JC} = \hbar \omega_r \hat{a}^{\dagger} \hat{a} + rac{\hbar \omega_q}{2} \hat{\sigma}_z + \hbar g (\hat{a}^{\dagger} \hat{\sigma}_- + \hat{a} \hat{\sigma}_+)$$

- Strong coupling between qubit and resonator when  $\omega_r = \omega_q$
- Formation of hybridized states separated in energy by coupling strength g
- Signature: vacuum Rabi splitting  $(g > \kappa, \gamma)$



A. Blais et. al., Rev. Mod. Phys. 93, 025005 (2021)



# **Device Architecture**



- Resonator and DC lines fabricated from NbN on packaging oxide
- $\lambda/2$  CPW hanger resonator with bias tap
- DC lines with LC lowpass filters  $f_c = 1.2$  GHz (L = 123 nH, C = 0.134 pF)
- Connections to NbN circuitry through W interconnects
- G3, G4 shorted at device level
- Source hard grounded to NbN ground plane
- DQD defined under G1, G2

• 
$$f_r = 5.428 \text{ GHz}$$
  
•  $Q_{\text{int}} = 530$   
•  $Q_{\text{ext}} = 1550$ 

### **Resonator – DQD Charge Coupling**



# **Strong Hole Spin-Photon Coupling**



linewidth:  $\frac{1}{2}(\gamma_s + \frac{\kappa}{2})/2\pi = 7$  MHz Cavity decay rate:  $\kappa/2\pi = 14$  MHz Extracted spin decoherence:  $\gamma_s/2\pi = 7$  MHz

# **Spin-Photon Coupling vs. Magnetic Field Orientation**



# **Spin-Photon Coupling in Single Dot Limit**





# **Conclusion / Future work**

- Spin-photon coupling largely exceeds results for electrons in Si
- Modified layout and resonator optimization to increase charge photon coupling and reduce resonator losses (aim: < 1 MHz)</li>
- Implementation of spin-photon coupling schemes relying on charge noise sweet spots

# Spin-Charge Mixing



#### **Resonator**

C. Yu et. al., Appl. Phys. Lett. **118**, 054001 (2021)





## **Charge Stability Diagram**



## **Charge-Photon Coupling Characterisation**

$$\chi_{\rm c} = g_{\rm c}^2 d_{01}^2 (p_0 - p_1) \left( \frac{1}{\Delta} + \frac{1}{\omega_{\rm c} + \omega_{\rm r}} \right)$$

$$\hbar\omega_{\rm c} = \sqrt{\varepsilon^2 + 4t_{\rm c}^2}$$
$$d_{01} = \frac{2t_{\rm c}}{\sqrt{\varepsilon^2 + 4t_{\rm c}^2}}$$

Zero detuning:  

$$\begin{split} \chi_{\rm c} &= 2g_{\rm c}^2 \frac{\omega_{\rm c}}{\omega_{\rm c}^2 - \omega_{\rm r}^2} (p_0 - p_1), \\ p_1 &= \frac{1}{1 + e^{\hbar \omega_{\rm c}/(k_{\rm B}T)}}, \\ p_0 &= 1 - p_1, \end{split}$$

# **Detuning Field Maps**



# **Angular Dependence Spin-Photon Coupling**

**Resonance Field** 



#### Angular Dependence Spin-Photon Coupling Resonance Field



# Angular Dependence of $\gamma_s$ and $\kappa$



# **Anisotropy of g-Factors and Tunnel Couplings**



#### Theory of Angular Dependence Spin-Photon Coupling

$$H_{\text{tunnel}} = t_0 \tau_x - (\mathbf{t} \cdot \boldsymbol{\sigma}) \tau_y \qquad \qquad t_c = \sqrt{t_0^2 + |\mathbf{t}|^2} \\ t_0 = t_c \cos \eta \qquad \mathbf{t} = t_c \sin \eta \, \mathbf{n}_{\text{so}}$$

$$\begin{aligned} H_{\rm DD} &= H_{\varepsilon} + H_{\rm Zeeman} + H_{\rm tunnel} \\ &= -\frac{\varepsilon}{2} \tau_z + \frac{1}{2} \mu_{\rm B} \tau_L \left( \boldsymbol{\sigma} \cdot \tilde{\mathbf{g}}_L V_L^{\dagger} \mathbf{B} \right) + \frac{1}{2} \mu_{\rm B} \tau_R \left( \boldsymbol{\sigma} \cdot \tilde{\mathbf{g}}_R V_R^{\dagger} \mathbf{B} \right) + t_0 \tau_x - \tau_y \left( \mathbf{t} \cdot \boldsymbol{\sigma} \right) \end{aligned}$$

Transform Hamiltonian with diagonalization of Zeeman term:

$$H_{\rm DD}'(\phi) = T(\phi)^{\dagger} H_{\rm DD} T(\phi) = -\frac{\varepsilon}{2} \tau_z + \tau_L \frac{1}{2} \mathsf{g}_L^*(\phi) \mu_{\rm B} B \sigma_z + \tau_R \frac{1}{2} \mathsf{g}_R^*(\phi) \mu_{\rm B} B \sigma_z + t_{\rm sc}(\phi) \tau_x - t_{\rm sf}(\phi) \tau_y \sigma_y \sigma_y + t_{\rm sc}(\phi) \tau_z + t_{\rm sc}(\phi)$$

### Theory of Angular Dependence Spin-Photon Coupling

$$g_{\rm s} = g_{\rm c} \left| \langle -\uparrow | \tau_z | -\downarrow \rangle \right|$$
 with  $g_{\rm c} = \frac{1}{2\hbar} \alpha \beta_2 e V_{\rm zpf}$ 

When average Zeeman energy for both dots is  $<< 2t_c$ :

$$g_{\rm s} = g_{\rm c} \frac{\bar{E}_{\rm Z} t_{\rm sf}}{2t_{\rm c}^2}$$

Transform Hamiltonian with diagonalization of Zeeman term (assuming left and right g-matrices are the same):

$$t_{\rm sf} = t_{\rm c} \sin \eta \left| \mathbf{n}_{\rm l} \times \mathbf{n}_{\rm so} \right|$$

Introduce Effective Spin-Orbit Field:

$$\mu_B \mathbf{g} \mathbf{B}_{so} = t_c \sin \eta \mathbf{n}_{so}$$
$$g_s = g_c \frac{\mu_B^2}{2t_c^2} \left| (\mathbf{g} \mathbf{B}) \times (\mathbf{g} \mathbf{B}_{so}) \right|$$