Fault-tolerant thresholds for the surface code in excess of 5% under biased noise

David K. Tuckett, Stephen D. Bartlett, Steven T. Flammia, and Benjamin J. Brown Phys. Rev. Lett. **124**, 130501 (2020) arXiv:1907.02554

Bence Hetényi Journal Club 03.10.2022 bence.hetenyi@ibm.com

Surface code 101

- d² data qubits
- d²-1 ancillas (always initialized)
 - 2 group: **X** and *Y* stabilizers
 - e.g., $S_{14} = X_1 X_2 X_3 X_4$
- Stabilizer measurements
 - measure every stabilizer (mutually commuting)
- Computational subspace: all stabilizers are +1

Surface code 101

- Error syndromes: stabilizer measurement "-1"
 - single errors → out of the computational subspace
- Decoders: error map from the syndromes
 - fault tolerance threshold
 - 3.3% for no error bias
- Logical qubit is encoded in a multiqubit state
 - d² data qubits and d² 1 constraints...
 - switch off stabilizers → extra degrees of freedom
 - logical operations

Error syndromes and symmetries

Z error is detected by both X and Y stabilizers

- 1D symmetries (infinite bias)
 - E-insensitive stabilizers: $SE|\psi\rangle = (+1)E|\psi\rangle$ $E \in \mathcal{E}_Z$
 - conserved quantities: defect parity per column (row)
- Symmetry breaking:
 - finite error bias $\eta = p_z/(p_x + p_y)$
 - measurement error p
 - finite lattice (different syndromes on the edge)

Decoding algorithm

- Infinite bias + periodic boundary conditions
 - "1D" parity conservation
 - Horizontal (H) and Vertical (V) vertices
 - minimum-weight perfect matching (MWPM)

- measurement errors
 - syndrome disappears in the next cycle
- X, Y errors
 - high-weight diagonal paths

Simple example of syndrome decoding

- Infinite bias (dephasing only)
- No measurement errors
- Periodic lattice

Not quite so simple example of decoding (overlaping syndromes)

- Infinite bias
- No measurement errors
- Finite lattice

Noise model

Noise in terms of error probability and bias

$$p_Z = p\eta/(\eta + 1)$$
$$p_{XY} = p/2(\eta + 1)$$

- Measurement noise: phenomenological noise model
 - Z errors on the ancillas do not cause X-Y errors on the data qubits

$$p_M = p$$

Results – fault tolerance threshold

 How to obtain the error threshold?

- Logical failure rate $f = f_{th.} e^{-a(p-p_{th.})^{\nu}d}$
- f close to threshold
 - expand to quadratic order
 - fit the dependence on p

Results – bias dependence of the error threshold

- Fault tolerance threshold: p_{th}
 - with measurement errors
 - periodic boundary conditions
- New decoder outperforms the unbiased algorithm (solid)
- Boundaries slightly change p_{th}

Results – optimal fault tolerance threshold

- No measurement errors + periodic BC
- Maximum likelihood decoder (solid)
 - 50% for infinite error bias
 - 18% for no bias
- Room for improvement for this MWPM decoder

Logical failure for low error rate ($p \ll 1/d$)

• Conventional decoders $f \sim \mathcal{O}(p^{\delta d})$

- High threshold at infinite bias:
 - might tolerate up to n/2 errors
 - can improve the scaling to $f \sim \mathcal{O}(p_Z^{\alpha d^2})$
 - for large d, the scaling will be dominated by $f \sim \mathcal{O}(p_{XY}^{\delta d})$

My thoughts/comments

- External boundaries do not change the threshold
 - What about internal boundaries (logical qubit)?
- Improvement in low-error logical failure scaling is (admittedly) speculative
 - In my opinion: just as important as the threshold