ARTICLES

https://doi.org/10.1038/s41565-020-00816-w

nature nanotechnology

Coherent control of individual electron spins in a two-dimensional quantum dot array

Pierre-André Mortemousque ${ }^{1,2 \boxtimes}$, Emmanuel Chanrion ${ }^{(1)}$, Baptiste Jadot ${ }^{(1)}$, Hanno Flentje ${ }^{1}$, Arne Ludwig ${ }^{()^{3}}$, Andreas D. Wieck \mathbb{D}^{3}, Matias Urdampilleta ${ }^{1}$, Christopher Bäuerle ${ }^{(1)}$ and Tristan Meunier ${ }^{1 区}$

Pierre Chevalier Kwon
26.04.2021

Device architecture

- (Homemade) Dilution refrigerator: $\mathrm{T} \sim 60 \mathrm{mK}$ - Static out-of-plane magnetic field
- 9 dots:
- GaAs/AIGaAs heterostructure
- 28 Gates: light blue and red ones are plungers other gates are used as barriers/tunnel
- 4 Quantum Point Contact (in the edges)

Loading sequence (up to 2 electrons)

- Load electron to TL dot (standard single dot charge stability diagram):
- $L_{1}: 1$ electron
- L_{s} : singlet state
- I: isolate the QD from the reservoir or perform readout
- Loading fidelity decreases with the number of electron n

Loading sequence（more than 2 electrons）

Single-electron charge config. in the array of 9 dots

Virtual gates are define such as:

$$
\left[\begin{array}{l}
\delta V_{\mathrm{X}}^{+} \\
\delta V_{\mathrm{X}}^{-} \\
\delta V_{\mathrm{Y}}^{+} \\
\delta V_{\mathrm{Y}}^{-}
\end{array}\right]=\left[\begin{array}{cccc}
C_{\mathrm{L}}^{\mathrm{L}} / C_{\mathrm{R}}^{\mathrm{R}} & 1 & 0 & 0 \\
-C_{\mathrm{L}}^{\mathrm{L}} / C_{\mathrm{R}}^{\mathrm{R}} & 1 & 0 & 0 \\
0 & 0 & C_{\mathrm{B}}^{\mathrm{B}} / C_{\mathrm{T}}^{\mathrm{T}} & 1 \\
0 & 0 & -C_{\mathrm{B}}^{\mathrm{B}} / C_{\mathrm{T}}^{\mathrm{T}} & 1
\end{array}\right]\left[\begin{array}{c}
\delta V_{\mathrm{L}} \\
\delta V_{\mathrm{R}} \\
\delta V_{\mathrm{B}} \\
\delta V_{\mathrm{T}}
\end{array}\right]
$$

- Goal is to mimic electric dipole behavior
- But another way to see it: Gates+ shift the energy level of the dots simultaneously Gates- move the electron from one side to the other

Single－electron charge config．in the array of 9 dots

$$
\delta V_{x}^{-}(\mathrm{V})
$$

Inset：simulation using a constant interaction model

Single－electron charge config．in the array of 9 dots

$$
V_{\mathrm{R}}(\mathrm{~V})
$$

Inset：simulation using a constant interaction model

Single－electron charge config．in the array of 9 dots

Inset：simulation using a constant interaction model

Single-electron charge config. in the array of 9 dots

Multiple electrons charge configuration

1. Load 5 electrons
2. Record a stability diagram varying $\delta \mathrm{V}^{-}{ }_{\mathrm{X} ; \mathrm{y}}$
3. Identify ($1,1,1,1,1$): highest symmetry point

Multiple electrons charge configuration

1. Load 5 electrons
2. Record a stability diagram varying $\delta \mathrm{V}^{-}{ }_{\mathrm{X} ; \mathrm{Y}}$
3. Identify ($1,1,1,1,1$): highest symmetry point
4. Load 4 more electrons in the corners

2 Spins manipulations: energy diagrams

Low exchange interaction

High exchange interaction

- When the 2 electrons are in the same dot, the singlet state is the ground state
- Otherwise, the ground state is the triplet T_{+}
- At P2, we get a mixture of $\mathrm{T}_{0}(1,1)$ and $\mathrm{S}(1,1)$

2 Spins manipulations: Spin mixing map

$\delta V_{\text {L-TL }}(\mathrm{V})$

Method:

- Start with a singlet in TL
- Pulse in a given gate configuration
- Read the state
- Repeat this 1000 time to get P_{S}

The spin mixing area (white/yellow) correspond to weakly T Tunnel coupled dots (or to $S(2,0)$ and $T_{+}(1,1)$ mixing)

2 Spins manipulations: Spin mixing map

2 Spins manipulations: Spin mixing map

$\delta V_{\text {L-TL }}(\mathrm{V})$

Method:

- Start with a singlet in TL
- Pulse in a given gate configuration
- Read the state
- Repeat this 1000 time to get P_{S}

The spin mixing area (white/yellow) correspond to weakly
©
=> Possible to tune the coupling of 2 dots inside the array (i.e. go from a decoupled regime to high exchange one and oppositely)
tunnel coupled dots (or to $S(2,0)$ and $T_{+}(1,1)$ mixing)

2 Spins manipulations：Spin mixing map

2 Spins manipulations: Spin mixing map

Method:

- Start with a singlet in TL
- Move it to C
- Pulse in a given gate configuration (50 ns)
- Read the state
- Repeat this 150 time to get P_{S}

2 Spins manipulations: Spin mixing map

Method:

- Start with a singlet in TL
- Move it to C
- Pulse in a given gate configuration (50 ns)
- Read the state

- Repeat this 150 time to get P_{S}

The high P_{S} probability area (blue) correspond to transfer the 2 electrons in another dot, preserving the singlet state. The mixing area (red) are where the electrons are split in 2 dots (and we have a mixture of $S(1,1)$ and $T_{0}(1,1)$
=> Possible to coherently displace spins

Coherent exchange oscillations

- Similarly do a spin map corresponding to T and C .
- Apply a poltage pulse sequence to pulse the tunnel barrier interaction in order to perform coherent exchange
 oscillations*
=> Coherent time of 100 ns
*See Bertrand, B. et al. Quantum manipulation of two-electron spin states in isolated double quantum dots. Phys. Rev. Lett. 115, 096801 (2015).

Coherent exchange oscillations

Conclusion

Summary of results:

- Loading and displacement of a single electron in the QD array
- Loading and (simple) displacement of up to 9 electrons
- 2 electron spin readout from any QD
- Local coherent spin oscillation between 2 dots of the array

Conclusion

Summary of results:

- Loading and displacement of a single electron in the QD array
- Loading and (simple) displacement of up to 9 electrons
- 2 electron spin readout from any QD
- Local coherent spin oscillation between 2 dots of the array

My personal opinion:

- Pragmatic approach to start to work on QD array
- But difficult to scale up

Thanks

Thank you for your attention!

2 Spins manipulations：Spin mixing maps

