

Coherent control of individual electron spins in a two-dimensional quantum dot array

Pierre-André Mortemousque^{1,2} ⊠, Emmanuel Chanrion^{®1}, Baptiste Jadot^{®1}, Hanno Flentje¹, Arne Ludwig^{®3}, Andreas D. Wieck^{®3}, Matias Urdampilleta¹, Christopher Bäuerle^{®1} and Tristan Meunier¹⊠

> Pierre Chevalier Kwon 26.04.2021

Device architecture

- (Homemade) Dilution refrigerator: $T \sim 60 \text{ mK}$
- Static out-of-plane magnetic field
- 9 dots:
 - GaAs/AlGaAs heterostructure
 - 28 Gates: light blue and red ones are plungers other gates are used as barriers/tunnel
 - 4 Quantum Point Contact (in the edges)

Loading sequence (up to 2 electrons)

- Load electron to TL dot (standard single dot charge stability diagram):
 - L₁: 1 electron
 - L_s: singlet state
 - I: isolate the QD from the reservoir or perform readout
- Loading fidelity decreases with the number of electron n

Loading sequence (more than 2 electrons)

Single-electron charge config. in the array of 9 dots

Virtual gates are define such as:

- Goal is to mimic electric dipole behavior
- But another way to see it: Gates+ shift the energy level of the dots simultaneously Gates- move the electron from one side to the other

Single-electron charge config. in the array of 9 dots

Basel

Universität Basel

Single-electron charge config. in the array of 9 dots

Single-electron charge config. in the array of 9 dots

Single-electron charge config. in the array of 9 dots

Multiple electrons charge configuration

- 1. Load 5 electrons
- 2. Record a stability diagram varying $\delta V_{X,Y}^{-}$
- 3. Identify (1, 1, 1, 1, 1): highest symmetry point

Multiple electrons charge configuration

- 1. Load 5 electrons
- 2. Record a stability diagram varying $\delta V_{X,Y}^{-}$
- 3. Identify (1, 1, 1, 1, 1): highest symmetry point
- 4. Load 4 more electrons in the corners

2 Spins manipulations: energy diagrams

- When the 2 electrons are in the same dot, the singlet state is the ground state
- Otherwise, the ground state is the triplet T₊
- At P2, we get a mixture of $T_0(1,1)$ and S(1,1)

Method:

- Start with a singlet in TL
- Pulse in a given gate configuration
- Read the state
- Repeat this 1000 time to get P_s

The spin mixing area (white/yellow) correspond to weakly tunnel coupled dots (or to S(2,0) and $T_+(1,1)$ mixing)

Method:

- Start with a singlet in TL
- Pulse in a given gate configuration
- Read the state
- Repeat this 1000 time to get P_s

The spin mixing area (white/yellow) correspond to weakly tunnel coupled dots (or to S(2,0) and $T_{+}(1,1)$ mixing)

Method:

- Start with a singlet in TL
- Pulse in a given gate configuration
- Read the state
- Repeat this 1000 time to get P_s

The spin mixing area (white/yellow) correspond to weakly tunnel coupled dots (or to S(2,0) and $T_{+}(1,1)$ mixing)

=> Possible to tune the coupling of 2 dots inside the array (i.e. go from a decoupled regime to high exchange one and oppositely)

Universität Basel

2 Spins manipulations: Spin mixing map

Method:

- Start with a singlet in TL
- Move it to C
- Pulse in a given gate configuration (50 ns)
- Read the state
- Repeat this 150 time to get P_s

Universität Basel

2 Spins manipulations: Spin mixing map

Method:

- Start with a singlet in TL
- Move it to C
- Pulse in a given gate configuration (50 ns)
- Read the state
- Repeat this 150 time to get P_s

The high P_s probability area (blue) correspond to transfer the 2 electrons in another dot, preserving the singlet state. The mixing area (red) are where the electrons are split in 2 dots (and we have a mixture of S(1,1) and T₀(1,1)

=> Possible to coherently displace spins

Coherent exchange oscillations

- Similarly do a spin map corresponding to T and C.
- Apply a poltage pulse sequence to pulse the tunnel barrier interaction in order to perform coherent exchange oscillations*
- => Coherent time of 100 ns

*See Bertrand, B. et al. Quantum manipulation of two-electron spin states in isolated double quantum dots. *Phys. Rev. Lett.* **115**, 096801 (2015).

Coherent exchange oscillations

Conclusion

Summary of results:

- Loading and displacement of a single electron in the QD array
- Loading and (simple) displacement of up to 9 electrons
- 2 electron spin readout from any QD
- Local coherent spin oscillation between 2 dots of the array

Conclusion

Summary of results:

- Loading and displacement of a single electron in the QD array
- Loading and (simple) displacement of up to 9 electrons
- 2 electron spin readout from any QD
- Local coherent spin oscillation between 2 dots of the array

My personal opinion:

- Pragmatic approach to start to work on QD array
- But difficult to scale up

Thank you for your attention!

Universität Basel

2 Spins manipulations: Spin mixing maps

