2.3 Quantum diffusive transport: weak localisation

In the preceding section 2.2 we discussed classical diffusive transport, i.e. in the limit
where the phase coherence length l(p (which we, as usual, loosely "mix" with the inelastic
length ;) is very much smaller than the size of the system. In this section we will discuss
the opposite limit, defined by

A’F’le<<L’ li,
In chapter 1 we discussed the fundamentally different nature of inelastic (or phase
breaking) and elastic (non-phase breaking) scattering. The preservation of the phase as
occurring in elastic scattering will maintain quantum interference, which will be shown to
lead to marked effects in-the conductance-in this regime-Evidently to experimentally
enter this regime we should bring the system at low temperatures to suppress phase-
breaking influences like phonons.
The phenomenon we will concentrate on goes under the name of weak localisation (WL).
Basically it results from the (quantum induced) enhanced probability for electrons
experiencing many elastic scatterings to return to their initial position. This leads to a
tendency for electrons to "stay where they are”, i.c. some kind of electron localisation,
resulting in a reduction of the conductance of the system.

2.3.a. A simple introduction to the theory of quantum corrections to the conductance:
Weak Localisation effect

In deriving the Drude expression for the conductivity, eq. (2.3), a fundamental
assumption is that each scattering event fully destroys all information on the initial
velocity (size and direction) of the particle. In quantum terms this also implies that the
phase correlation is completely suppressed during such event. If however, in contrast, the
phase of the electron is (partially) preserved during scattering, this will affect the
diffusion coefficient and so the conductance employing the Einstein relation eq. (2.8).
From this equation, which contains the diffusion coefficient D given by the Kubo
expression (2.10), it is immediately clear that conservation of the phase will introduce a
correlation between the velocities for times beyond the elastic scattering time T, and up
1o the phase-coherence time Ty,

~

A fundamentally correct derivation of weak localisation requires a rather involved
mathematical approach based on so-called diagrammatic techniques, which is well
beyond the scope of our introductory text. We will use an approach employing "ray or
geometric optics", augmented by the phase per raytrace, called the Feynman path method.
Figure 2.8 shows the basic ingredients of this approach. The transport of an electron from
an initial position 1 to a final position 2 is described as the transmission of an electron
wave from 1 to 2 through the diffusive medium. This implies that the electron wave,
starting at position 1, will become distributed over a number of partial waves y;, each
traversing the system along a different path p; while experiencing many elastic scattering
events before ultimately arriving at 2.

It should be noted that, to allow the use of the semi-classical Feynman paths to evaluate
the total transmission probability, we implicitly assume that the electron really can follow
a well-defined path, i.e. it should not be scattered too strongly on its characteristic length

39



Figure 2.8. Electron waves travelling through a disordered medium containing elastic
scatterers. The wave of a single electron at position O is distributed over a number of
partial waves y;, each following a well-defined path p;, arriving at position Rwith a
transmission coefficient t;. Note that the phase @; on arriving at position R depends on
the path length thus differing for each individual path.

scale, Ap. As discussed immediately following eq. (2.5), violating this condition will lead
to strong localisation, a phenomenon requiring a completely different description. To
calculate the total quantum mechanical probability for the electron to travel from O=>R
we have to evaluate the vector sum of all the partial waves arriving at R, i.e. including the
phases @; of all the partial waves as acquired while following their individual paths.
Figure 2.9 shows a scattering medium with a number of scatterers * denoted by 0, 1, 2, 3,
...The electron wave is taken to start at position 0. We can distinguish between two
different sets or ensembles of paths. The first set just connects two random positions, e.g.
0 and 7. Paths like {0,1,7}, {0,4,2,7}, {0,5,4,3,2,7} etc. all contribute to the total
amplitude of the wave at 7, which then is given by

‘I’(7)=Zy/j :thexp(igoj) (2.17)
J J

Note that such a sum also contains contributions from multiple scattering, e.g. a path such
as {0,4,2,4,2,7) is included, and so evaluating it will be a matter of tedious and accurate
bookkeeping!

-

Figure 2.9. An electron
wave starting at position 0,
with its partial waves
, travelling along various paths.

9" ~The solid lines show paths

x leading from O to (a randomly
chosen final) position 7. The
dashed sequence of lines
forms a path that allows the
electron to return to its
starting position 0.




Formally, from eq. (2.17) we straightforwardly can write down the total probability for
the wave at (say) position 7, as

PSP = Zr} + I 11 cos(; — @) (2.18)
j Jj#k
Now we assume that many different paths contribute to the total amplitude. In the second
term of eq. (2.18), containing the cross-product terms, the random distribution of the
phases g for all the paths p; yields on average as many positive and negative
contributions, thus reducing its sum to a small value. So, the total probability for forward
transfer between two randomly chosen positions (0 and 7 in our case) approximately is
just the sum of the probabilities of the individual partial waves,

Phvrd = 215 (2.19)
J

Next we pose the question what happens if we take the initial and final position in space
10 be the same. This implies that we want to know what probability is associated with
returning to the initial point. In figure 2.9 paths like e.g. {0,1,7,6,0} and {0,5,4,0} are
typical examples, taken for the starting position 0. Let us look in 2 little more detail to the
various trajectories involved in the total return probability. Concentrating first on
randomly chosen different paths, it is evident that the same argument holds concerning
the phases as given before for the different points in space and thus the total probability
resulting from these trajectories is again the simple sum of the partial probabilities (eq.
(2.19)).
However, in addition to these randomly chosen paths we also have to include a particular
type of complemeniary trajectories. More specifically a typical example in figure 2.9 is
{0,1,2,3,4,5,0} and {0,5,4,3,2,1,0}, i.e. the first is the time-reversed version of the second
(and vice-versa). These time-reversed twins of course are not independent. In particular
the identical length of the two paths implies that the phase-differences acquired during
travel will be exactly the same. In addition the symmetry of elastic scattering events
dictates that also the amplitude of the two partial waves will be the same.
Write ji,. for the amplitude of the wave along path p; taken in one particular direction (say,
clockwise), and z,. for the arriving amplitude after traversing the path in the opposite,
counter-clockwise direction. For the total contribution of this path to the retum
probability we thus find

2 .
Pi(0—0) =12, +15_+1,1; cos(g; —@j+1j_t;, cos(p; —p;) =417 (2.202)

as 1= f;.= t; from the symmetry argument. For the results after summing the contributions
of all paths we thus find

Prewurn = PO—>0)= T P;(0 > 0) =43 13 (2.:20b)
J J

One factor of 2 results from the fact that we simply have summed over two trajectories
per entry j: for each path denoted by a single j also the complement was taken in the sum.
However then we are still left with a second factor of 2. This factor is the direct
consequence of the coherent, in-phase addition of time-reversed paths.



So we conclude that the phase-coherent summation of time-reversed trajectories in a
diffusive medium leads to an increased probability for electrons to return to their initial
position. This is commonly referred to as coherent back scattering. It implies that
electrons indeed tend to remain at their initial site, an effect which leads to a reduction of
the conductance (and an increase of the resistance) of the system, denoted as Weak
Localisation (WL).

Before providing a more quantitative estimation of the strength of weak localisation in
the conductance we first want to demonstrate a quite remarkable effect associated with
the directions of the electron waves involved in this quantum coherent return
phenomenon. Figure 2:10 shows twe specifie scatterers-1 and 2, with a plane electron
wave incident on the two from the left. The wave, with the incoming plane wave front at
A indicated by the dashed line, is (partially) scattered directly at each scatterer and
returned, but in addition it is (partially) scattered to the other scatterer at a distance Ar,,
followed by returning to the left. To calculate the total leftwards outgoing wave we have
to (coherently) sum the individual contributions, including the phases, and see what
condition is required to recover a plane wave front at B and C, denoted by the dashed

lines. Now consider the two parallel rays R1 (top) and R2 (bottom) of the incoming beam.

R1 is scattered from 2 to 1 and we assume it to leave 1 at an angle drelative to the
incoming direction. The lower ray R2 follows the path 1 to 2 (i.c. reverse as compared to
R1) and we look at the ray leaving 2 at the same angle 8. Note that the figure also shows
the rays leaving at the complementary angle - 8.

The difference in pathlength, Al{,(8), between the two rays that leave 2 and 1
immediately follows from the geometry, yielding

Aljp(d)=a—a'= Any(cos(8)—cos(8' ) (2.21a)

with @=8+06 (and 6"-8 for the complement) is the angle between Ar, and the direction

Figure 2.10. Coherent back-scattering of a plane electron wave at A incident on two
elastic scatterers I and 2. At B a wave front leaving the scatterers at an angle —0 relative
to the incoming beam is shown; similarly a wave front leaving at +6 is indicated at C.
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_ of the incoming wave (see figure 2.10). Assuming & to be small (see below) we find for
the associated difference in phase

AQya(+8)=27 Ahp(£3) 5, A
Ap A

dv] {—-%-52 cos(6)+8 sin(6)) (2.21b)
F

For the toral outgoing wave we have to sum the + and - terms and so the contributions
due to the sin(6) term cancel, so we only have to consider the cosine term. The
contributions of the two rays only add constructively if they differ in phase by no more
than ~m/2. As the alignment of the two scatterers is completely random, we now have to
average over all possible directions of Ary, relative to the incoming beam, i.e. with the
angle 6 covering the range -#/2<8<n/2. This yields-forthe average over angle

<A cos(0)>=Ary /2=1,/2 (2.22)

the last equality resulting from the fact that we take the two scatterers at their minimum
average separation Ary, ~[.. Combining eq. (2.22) with eq. (2.21b) and including the
limit <A@, ;> </2 we find the following maximum angle &,,, for the reflected outgoing
wave relative to the incoming wave

Smax =JAF /1, (2.23)

As discussed previously we limit ourselves to the case that the electron can trave] freely
at least over a number of wavelengths or Ag<<l,, which implies that d,,, << 1. So we
have to conclude that the reflected wave only has an appreciable intensity within a (2D or
3D) cone with a (small) top-angle 28, relative to the direction of the incoming beam.
This underlines that indeed the wave is truly back-reflected in a coherent way.

Now we are in the position to calculate quantitatively the effect of weak localisation on
the conductance of the system. For the sake of simplicity we will limit the discussion to
the 2D case. We employ the celebrated Einstein relation, eq. (2.8), for the conductivity
and see how the coherent backreflection reduces the diffusion coefficient by an amount
AD.

Using the Kubo expression (2.10) for D as the velocity-velocity correlation,

D= [<¥,(1)7,(0)>dt
0
we evaluate the correction resulting from the increased correlation due to the coherent
backscattering, with v, (£)l~lv, (0)i~vg. The (negative) contribution to D thus can be
written as

AD =~-< VFVF*SI%LQX* Prerum(AS(r = 6)) > direction (2.24)

with <....>gjrection denoting the averaging over all (2D) directions of the incoming beam,
as usual for the calculation of the diffusion coefficient. It leads to the 1/d-factor, with d
denoting the dimensionality of the problem (see also eq. (2.9)). The maximum angle Smax
is included squared as we are calculating the return probability. From our semi-classical
ray-optics picture Ppey,(AS(r=0)) is the (classical) probability for the particle, starting at
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a certain position r=0, to return to within an area of size AS around this initial position,
and within a time scale that is relevant for the problem at hand; note that this "origin" can
be taken completely arbitrarily. This probability integrated over all times can thus be
written

Prorurn(AS(F = 0)) = AS*C, gy = AS j C(0,t)dt = AS — j n(0,0dr  (2.25)
0 "0 g
with n(0,) given by expression (2.12), i.e. representing the probability to return to the
initial position at a certain time £. From (2.12) we immediate find for the 2D case

n2D(0 t)y= n0C2D(O I)— 47CD

Before proceeding by evaluating the integral of (2.25) we have to include two more terms
to it, based on the relevant time scales in the problem. First, we have to realise that
electrons traveling for times shorter than the elastic scattering time 7,=/./vg will not be
able to return what so ever, and so they will not contribute to the backscattering. This
might be accounted for by changing the lower limit to the integral from O to 7, but to
allow for the statistical nature of this aspects it is covered by multiplying C(0,f) by the
factor (1-exp(-1/7.)). Secondly, there is also an upper bound to the integral: by the time
the wave loses its phase coherence it no longer can contribute to coherent backscattering
and so we should limit the integral to times smaller than the phase breaking time To-
Again by accounting for the statistical nature it is incorporated by multiplying by the
factor exp(-t/ ’l'(p).
The last term to be defined in eq. (2.25) is the return area AS. From the discussion around
the figures 2.9 and 2.10 it is clear that we can not define "a return” any better than given
by the average distance between elastic scatterers Ar, ~I,, and so we immediately find
(in 2D) for the typical return area AS ~2.
Introducing the three factors into eq. (2.25) and including also eq. (2.26) we find

2.2 hod
LVFSmax lexp(—L)(l—exp(—L))dl‘ (227

2+47D o! To T,

The time-integral yields ln(1+r¢lfe) which equals ~ln(1¢/re) if the phase breaking time is
much larger than the elastic time.
Thus the final expression for the weak localisation correction to the conductance reads

1 262

7
Aoy p = € P2pADyp = === —In (—Tﬂ) (2.28)
e

(2.26)

ADyp = -

It demonstrates two important properties. First, its size is of the order of the conductance
quantum e2/h. Secondly it is only weakly dependent on the ratio of the phase breaking
length and the elastic length, once this ratio is >>1.

Equation (2.28) is for the 2D case; similar expressions can be obtained for the 1D and 3D
case. One finds that the effect strongly increases at a reduction of the dimensionality, i.e.
it is largest in 1D.

It is also noteworthy to see that the dimensionality for weak localisation is governed by
the phase breaking length l(p in comparison to the size of the system.
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Before proceeding to discuss some experimental results that demonstrate this quantum
interference effect in the diffusive regime we first have to consider how one would be
able to determine it: if the WL only reduces the conductivity by a small fraction we need
a way to distinguish between the classical conductance (eq. (2.7a}) and the correction due
to WL (eq. (2.28)). To this purpose we consider the effect of an applied magnetic field on
the WL effect, and we will find that for sufficiently large fields the correction Ay o from
eq. (2.28) becomes suppressed. This allows us to distinguish between the classical and the
WL contribution.

Applying a magnetic field to an electron travelling at a velocity vg results in two effects:

= Classically it will bend the path of the electron due to the Lorentz force, leading to the
formation of the circular cyclotron orbits; we have discussed this in chapter 1, egs. (1.8).
The important question we have to pose is how this curvature affects the WL correction,
i.c. what effect does it have on a trajectory and its time-reversed complement (See again
figure 2.9). Evidently the field-induced curvature affects the precise shape of the
trajectories. In particular, the two time-reversed trajectories will become increasingly
dissimilar for increasing field strength. However, at the small fields required to affect the
WL (see below) the effect due to the curvature turns out to be negligible.

= Quantum mechanically the magnetic field affects the canonical momentum p via the
vector potential A defined by the magnetic field as B=VAA.From introductory
quantum mechanics we know that for a charge g=-e

p=hk =my +qA=mv —eA (2.29)
which implies that the wavevector k becomes B-dependent. The electron travelling at the
Fermi energy from position 1 to 2 along a path defined by [ acquires a phase

2 2 2
AQD]__)z = j ]_C.di = Zﬂ%‘!’\-j}: df —27!%.[ A di = AVQDX_)z + AA901—>2 (230)

1 1 1
Note that the phase acquired following the trajectory is affected by the magnetic field via
the second term of eq. (2.30), i.e. via the vecror potential. We will return to this aspect in
more detail in chapter 5.
Now let us concentrate on a typical WL trajectory, i.e. a time-reversed pair that
(approximately) returns to its initial position after a number of elastic scatterings (figure
2.11). The resulting closed trajectory implies that in the expression (2.30) for the phase
the integral should be interpreted as a loop integral enclosing the area S. For the phase
this yields

€1+ 7 €= ,3 e
A =kgpl-2n—¢A-dl =kpL-2n—B-dS=kpL-2r—] 231
129 =kF h§ F P ﬁ F Y (2.31)
with @ denoting the flux B.S penetrating the area enélose by the closed trajectory. The

quantity /e is called the (single charge) flux quantum, written as @g=h/e. Now take the
two time-reversed trajectories. Encirculating it clockwise will yield

Ahos® = kFL—27I§6 (2.32a)
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Figure 2.11. A typical trajectory that
contributes to weak localisation, allowing
an electron to leave from I and, after a
number of elastic scattering events, returning
~ <0-a position-2, orvice versa going from 2 to
1; 1 and 2 are separated by less than an
elastic length l,. The trajectory encloses an
area indicated by S.

while traversing it in the opposite (i.e. counter clockwise) direction yields

<
Acclw:(P = kFL+ 2r— (2.32b)
Do

Note that the zero-field term kgL is (evidently) independent of the direction of travel. For
the difference in phases acquired in travelling clockwise and counter clockwise along the
time-reversed paths we thus find

/) D BS
Ap=Ap(B)=(2n~( 2”»‘1’0 ¥4 oy 4 , 2.33)
Note that the magnetic field enforces the two time-reversed trajectories to become
dissimilar as far as their phases are concerned. Stated differently, a magnetic field leads to
time-reversal symmetry breaking, a very general quantum phenomenon associated with
the application of magnetic fields.

As we have discussed in relation to eq. (2.20) at zero B-field the fully in-phase coherent
summation of the waves of the two time-reversed paths resulted in the factor-of-2
increase of the probability for back scattering. This implies that the phase-shift (2.33)
induced by the field will reduce this sum following cos(A¢(B)), i.e. the magnetic field
indeed affects the contribution to the weak localisation. In particular, at such a field that
this shift amounts to ~7/2 the (zero field) constructively interfering contribution to WL
(from that particular path) at a certain B-field will turn into a destructively interfering
contribution, and so it will become suppressed.

Now we have to realise that the total WL effect results from contributions from a large
ensemble of individual (pairs of time-reversed) trajectories, each of different shape and
size and so enclosed areas Sj. At a given field the phase shift depends (linearly) on the
area S associated with each particular trajectory p;. More specifically, for the whole set of
trajectories the longer ones, which most likely (but not necessarily!) will also enclose the
larger areas S, will acquire a larger phase shift than the shorter ones. The longest paths
which can contribute to WL are those with a size of approximately the phase coherence
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length, i.e. Ly, <~ly, with an associated enclosed area S lg = x(ly / 2m)% . These will

vield the largest phase shift at a given field. So, as a consequence, and based on eq.
(2.33), weak localisation will start to become suppressed whenever
T 2% 2T lp o
Ap=—=-—§, B.=—nr(-—--)"B, 2.34
¢ 2 @, I, %c @, (27r) [ ( a)
From this a characteristic field B.. can be defined where the suppression starts to become
effective

B, ~ —d% = % (2.34b)
l.p elq, ]

So, in conclusion, weak localisation can be suppressed by applying a magnetic field such

that the zero-field time-reversed trajectories become dissimilar in acquired phase due to

time-reversal symmetry breaking. This suppression of WL provides a way to study the

effect experimentally.

2.3.b. Experiments on Weak Localisation

In the following part we discus two experiments showing weak localisation in the
conductance, one on a semiconductor system and one on a metal. In order to demonstrate
the very general nature of coherent backscattering in disordered system we show a third
experiment which is not associated with electrons but employs optical waves.

1. Weak localisation in two-dimensional electron gas in a Si-MOSFET.

We first concentrate on the effect in a 2-dimensional electron gas in a semiconductor
structure. (D.J. Bishop et.al., Phys. Rev. B26, 773-779 (1982)). The 2DEG is formed at
the interface of a Si-MOSFET, the gate of which allows the electron density to be
controlled; in this way the diffusion constant can be varied via the elastic mean free path
and the Fermi velocity (see eq. 2.9). Figure 2.11 shows one of the results obtained in the
experiment (noisy curve, “overlapped” by the solid curve b; the (fitting) curves a, b and ¢
result from a full theoretical treatment). It is obtained at 7=100 mK and an electron
density n.~4.5% 10" m2. Note the characteristic field scale for reaching a “field-
independent” value B~ a few times 0.1T (note: 1 kG=0.1T).

{a) a=15
F=1.0
- " Rg (ohms/o) B .
X Ti*1.625x107" sec oko-26-7s-s | Figure 2.12. Reduction of the
(b} a=1.0 = . . . )
Fe10 1420 Vgr400v resistance with magneric field, due
T;=375x107" T=01x ;
[ to suppression of the weak
(¢} @=05 . . .
Fel0 localisation, in a 2D electron
- ~10 . - .
TimdToNIeT - 1 system atthe Si-SiOx interface.
1380 The “noisy curve” is the
c .
b actual experimental data. The
1360 smooth curves a, b and ¢ represent
, ] . \ L . , different curves resulting from a fit
-20 —-15 -10 -05 ] 6.5 1.0 1.5 2.0 to the theory_
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Problem: Rewrite the resistance contribution due to WL in figure 2.12 in a change in the
conductance; is the value thus found in reasonable agreement with eq. (2.28) assuming
the logarithmic term to be of order unity?

Problem: Take from the original paper of Bishop et.al. the mobility. Evaluate the elastic
mean free path from the electron density and the mobility. Evaluate also the phase
coherence length from the characteristic field scale of fig. 2.12, using eq. (2.34b). Is the
assumption of the near-unity value of the In-term allowed?

2. Weak localisation in a thin metallic Mg film.

In this magnetoresistance experiment Bergmann (Phys. Rev. B25, 2937-2939 (1981); see
also Physics Reports 107, 1-38 (1984): the figures-are taken from this last paper, i.e. their
figures 2.11. and 2.12) investigates the magnetic field dependence of the conductance of a
very thin Mg film evaporated onto a crystalline quartz substrate. Homogeneous films with
thicknesses varying between 7 and 12 nm were obtained by performing the evaporation
with the substrate held at ~ SK. The data points, shown in figure 2.13a, are taken at five
different temperatures between 4.5 and 20K. The magnetic field for each temperature is
indicated next to each individual experimental curve; it varies for the range of
temperatures taken in this experiment. This change of characteristic field scale is
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Figure 2.13. Weak localisation in a thin Mg film. Panel a. shows the experimental results
obtained at five different temperatures between 4.6 and 19.9 K. The resistance in an
applied magnetic field shows the characteristic behaviour of weak localisation, with a
(temperature dependent) suppression field. In panel b. the phase breaking time is shown
as deduced from the measurements.
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accordance with the decrease of the phase breaking length with increasing temperature
(eq. 2.34b). The full curves are fits to a full theoretical treatment of the WL problem; note
the very good agreement obtained in this fit! From these results it is rather straightforward
to evaluate the temperature dependence of the phase breaking time; this is shown in
figure 2.13b.

Problem: Determine the dimensionality of this WL experiment. For this to do, remind
yourself on which length scales are relevant. Take the needed values from the Phys. Rev
paper of Bergmann.

3. Coherent backscattering in optics: the narrow coherent cone. -

The third experiment we want to discus seems to be of a completely different nature. In
the preceding discussion we have concentrated on electron waves in diffusive systems.
However, from the whole line of reasoning it is completely self-evident that the whole
line of reasoning that leads to WL should hold for any type of waves in a diffusive
medium! So it is anticipated that also mechanical waves (e.g. in acoustics) or
electromagnetic waves should show the same phenomenon, with the (important!)
exception that a magnetic field will not be able to break the time-reversal symmetry in
these cases. This missing control mechanism (or "experimental knob") thus demands a
different approach in order to investigate the phenomenon, in order to separate the WL
contribution from the much larger "classical" background. This can be done by employing
the aspect of coherent backscattering into a narrow cone as discussed before (see figure
2.10). We found the important result that a beam incident onto the diffusive medium
shows an increase probability of being backreflected, preferentially within a cone
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Figure 2.14. Schematic diagram of the
optical set-up to study weak localisation
of optical waves in a disordered medium.

Figure 2.15. Coherent backscattering
in a suspension containing 1 um Latex
spheres. p is the suspension density.
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determined by eq. (2.23) with a total angle
Seone =28 max ~ AR /1, (2.35)

Note that this expression is formally only "correct” for the 2D case; however it is found to
depend only very weakly on dimensionality. We want to describe an optical
(=electromagnetic wave) experiment which nicely demonstrates this coherent
backscattering.

Figure 2.14 shows the set-up for this experiment (Albeda et.al., Phys. Rev. Lett. 55, 2692-
2695 (1985)). Then optical wave is provided by a He-Ne laser. The diffusive medium is
realised by dispersing Latex polystyrene spheres of ~ 1 um diameter in water. The
effective elastic mean free path could be varied by changing the the density of the
suspension. The laser beam reaches the diffusive cell (which contains the "milky"
suspension) via a beam splitter. The beam reflected from the cell is measured by a photo
detector PD. The position of the detector can be varied in space, which allows an angular
dependent determination of the reflected beam. The results of these measurements are
shown in figure 2.14. The three sets of data are for different concentration of the particles
in the suspension. The solid curves are fits to a more complete theory, but the typical
angle is found to be in very good agreement with our simple eq. (2.23).

2.4 Closing remarks

In this chapter we have discussed a number of classical and one quantum phenomenon
that are characteristic for mesoscopic systems in the diffusive regime. Here we want to
make one additional remark derived from the quantum phenomenon of weak localisation.
As we have shown this results from the complex electron wave interference in the
diffusive background. It is of interest to briefly reconsider the magnitude of the effect, as
given by eq. (2.28). Apart from the weak (logarithmic) dependence on the ratio of the
times for phase breaking and elastic scattering, the typical amplitude in the change of the
conductance due to WL amounts to e2/h, i.e. the conductance quantum. Stated differently,
irrespective of the details of the distribution of elastic scatterers (i.e., the microscopic
configuration), the quantum effect on the conductance always is of the same order of
magnitude. On the other hand, it will be clear that changing the configuration of the
scatterers will result in some change in the conductance. Combining these arguments
points towards the presumption that varying the microscopic details of a mesoscopic
diffusive medium while maintaining its macroscopic, average properties, leads to
variations in the conductance that will be (typically) no larger than the conductance
quantum,

This conclusion can be verified in 2 much more rigid way, .and the important and highly
fundamental phenomenon of such fluctuations in the conductance of diffusive systems is
very well known in the literature under the name of Universal Conductance Fluctuations
or UCF. The adjective "universal” stresses the role of the conductance quantum in this
respect. In addition to Weak Localisation it is the second important quantum phenomenon
found in diffusive mesoscopic systems.
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