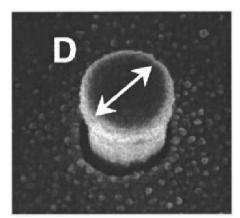
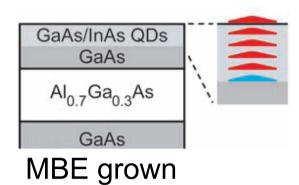
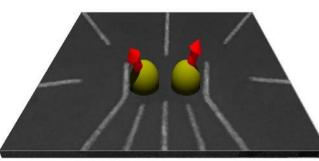
Quantum Dots

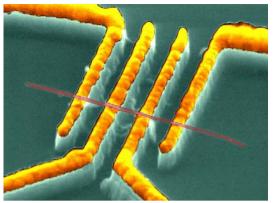


vertical dot

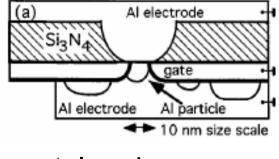




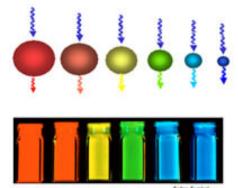
lateral



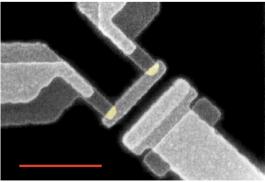
nanotube



metal grain

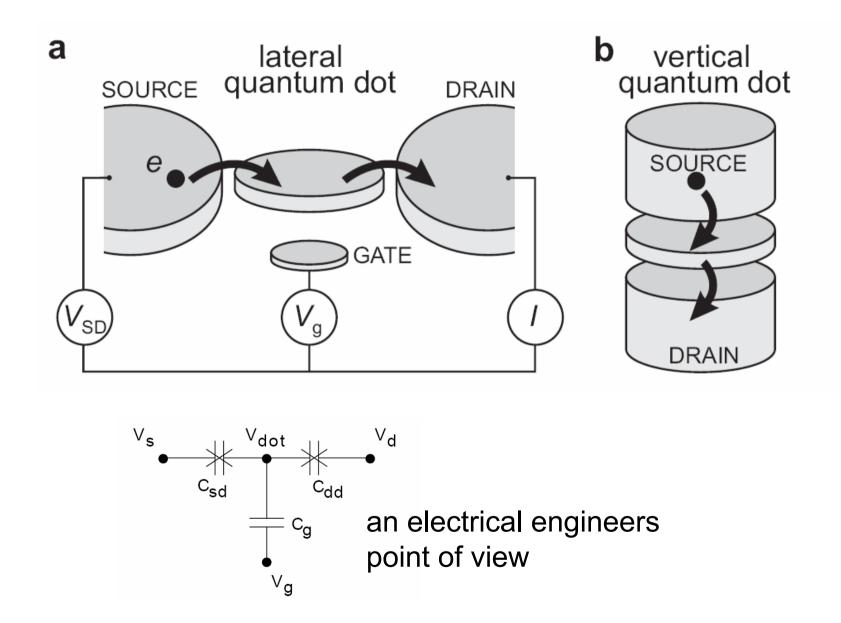


self assembled

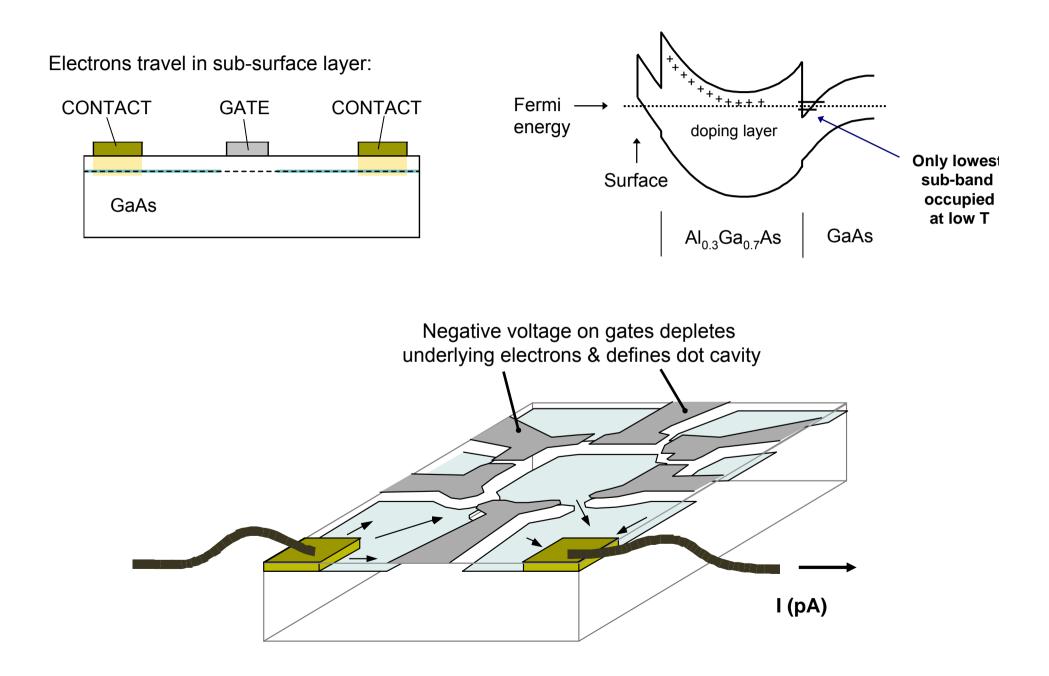


metallic SET

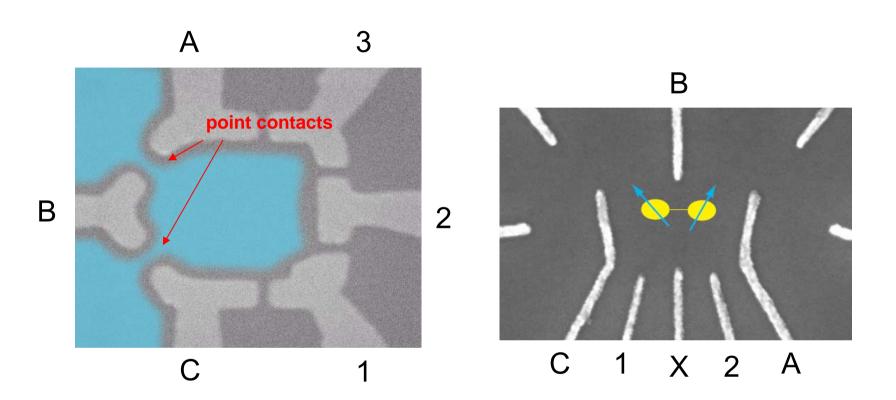
lateral vs. vertical



Lateral Dots: Formed in GaAs/AlGaAs 2DEG

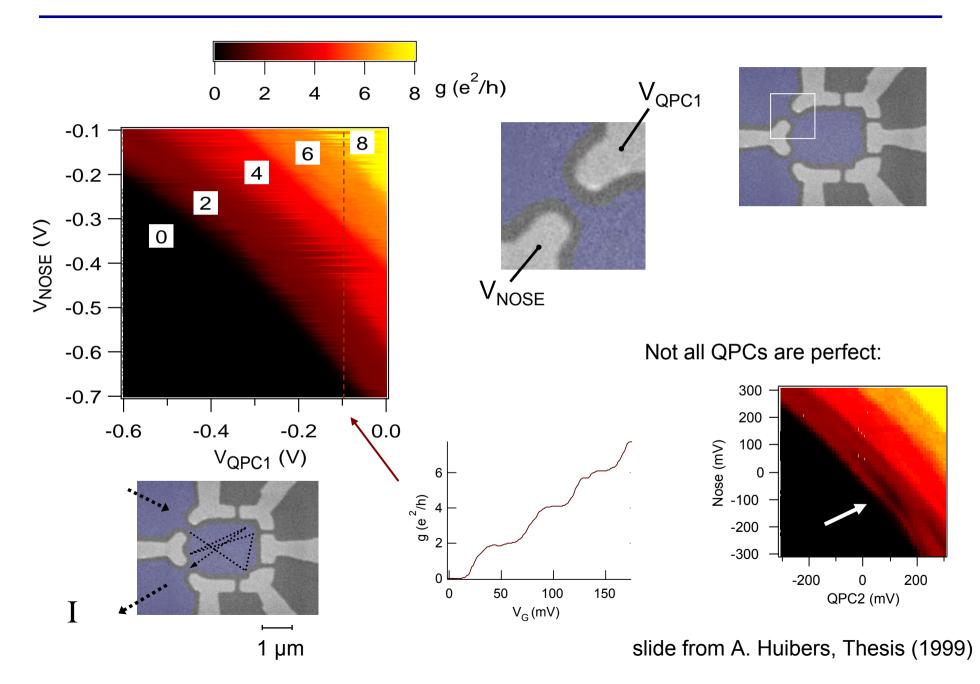


gate defined dots



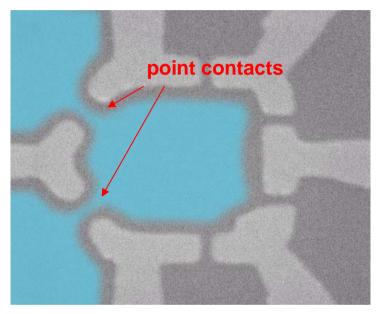
- A,B,C : control quantum point contacts transmission to reservoirs
- 1,2,3: control confinement potential / energy levels only
- X control dot-internal tunneling rate

Quantum Point Contact Leads



Open vs. Closed

Open Dot

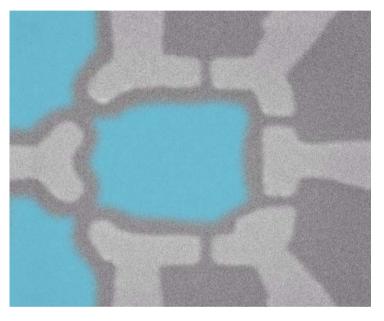


 $\cdot V_{gate}$ set to allow $\ge 2e^2/h$ conductance through each point contact

·Dot is well-connected to reservoirs

•Transport measurements exhibit CF and Weak Localization

Closed Dot



 $\cdot V_{\text{gate}}$ set to require tunnelling across point contacts

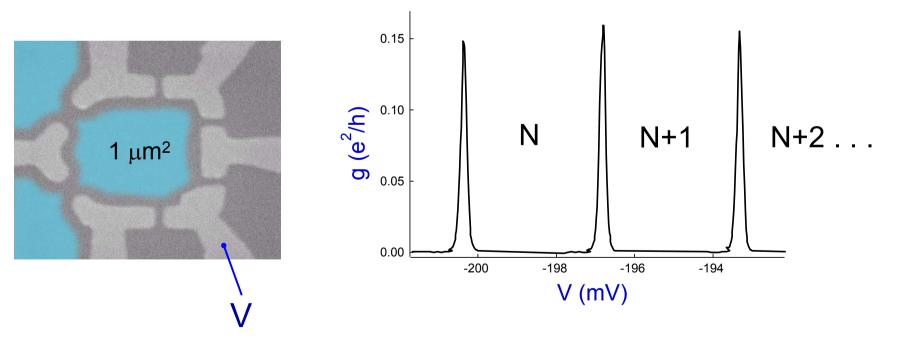
•Dot is isolated from reservoirs, contains discrete energy levels

•Transport measurements exhibit Coulomb Blockade

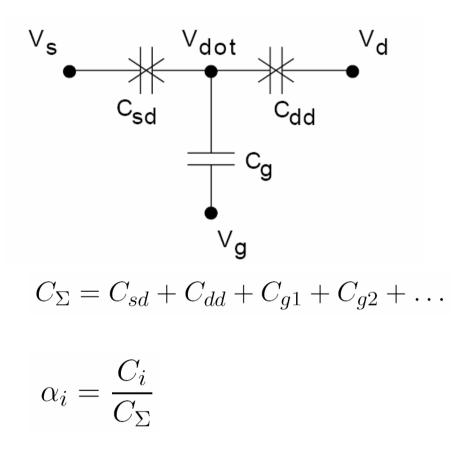
Coulomb Blockade in Closed Dots

Finite energy $E_c = e^2/C_{dot}$ is needed to add an additional electron to the dot. When kT<<E_c charging blocks conduction in valleys.

Coulomb blockade peaks: resonant transport through dot levels



Electrostatic Energy



apply voltages

what is potential on dot?

voltage divider...

$$V_{dot} = \sum_{i} \alpha_i V_i$$

can use V_g to shift dot energy!!

C_{sd}

 $1 \land$

Сg

Vg

C_{dd}

capacitance of dot to world = C
$$C = \epsilon_0 \epsilon \frac{A}{d}$$

energy stored in capacitor
$$U = \int_0^Q V dq = \int_0^Q \frac{q}{C} dq = \frac{1}{2} \frac{Q^2}{C}$$

charging energy $E_C = \frac{e^2}{C_{\Sigma}}$ can range from ~0 to many meV

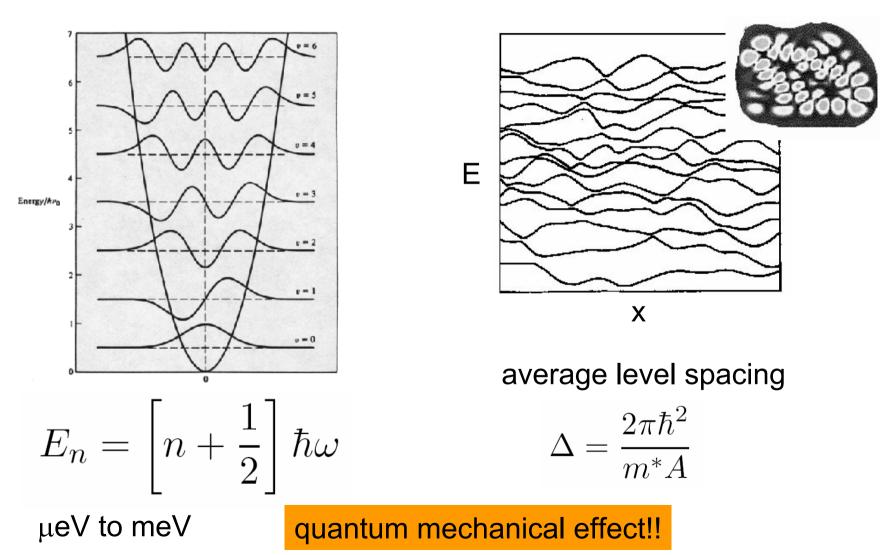
 $C_{\Sigma} \gtrsim 10 \,\mathrm{aF}$

Classical Effect, NOT quantum

Confinement Energy

harmonic potential

complicated potential

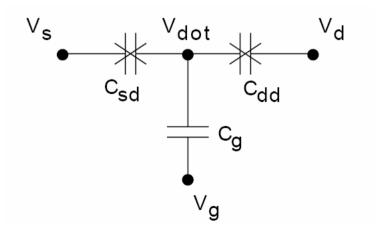


Capacitor Model

$$E(N) = \left[Q_{tot}\right]^2 / (2C_{\Sigma}) + \sum_{k=1}^{N} \epsilon_k$$
 total dot energy

$$E(N) = \left[e(N - N_0) - \sum_{k=1}^N C_k V_k \right]^2 / (2C_{\Sigma}) + \sum_{k=1}^N \epsilon_k$$

offset charge



Constant Interaction Model

$$E_i = \sum_{k=1}^N q_k \phi_k$$

 $q_k = -e$

 ϕ_k : interaction of electron k with rest

constant inteaction: model ϕ_k with C_{Σ}

$$\phi_k = -(k-1)e/C_{\Sigma}$$

$$E_i = \frac{e^2}{C_{\Sigma}} \sum_{k=1}^{N} (k-1)$$
$$= \frac{N(N-1)e^2}{2C_{\Sigma}}$$

$$\begin{split} E(N) &= E_{\rm QM} + E_i + E_e & \text{total dot energy} \\ &= \sum_{n=1}^N \epsilon_n + \frac{N(N-1)e^2}{2C_{\Sigma}} - Ne \sum_{i=1}^6 \alpha_i V_i \end{split}$$

$$\mu_{\rm dot}(N) \equiv E(N) - E(N-1)$$

 μ =0: change N current flows

energy to add one more electron

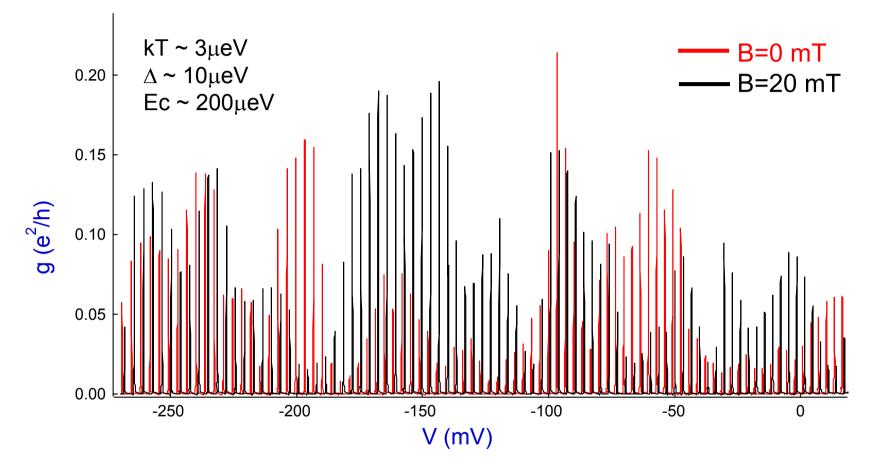
constant interaction model:

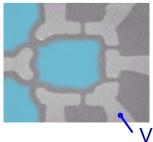
$$\mu_{dot}(N) = \epsilon_N + (N-1)\frac{e^2}{C} - e\sum_i \alpha_i V_i$$

addition energy

$$\left(\mu_{\text{dot}}(N+1) - \mu_{\text{dot}}(N)\right)\Big|_{\text{fixed } V_i} = \epsilon_{N+1} - \epsilon_N + e^2/C_{\Sigma}$$
$$\equiv \Delta \epsilon_{N \to N+1} + U$$

Quantum Coulomb Blockade

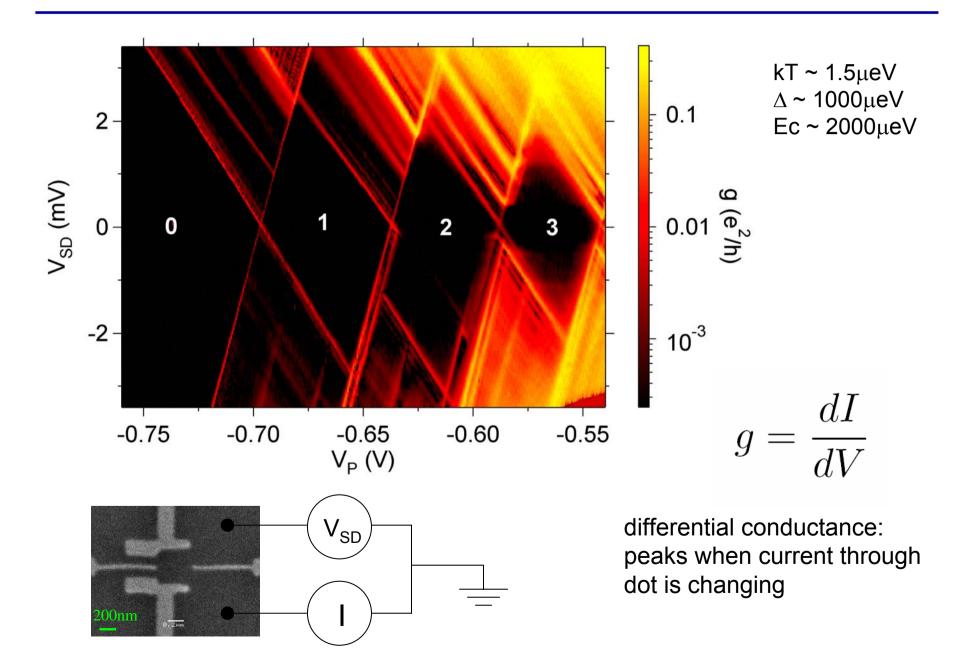




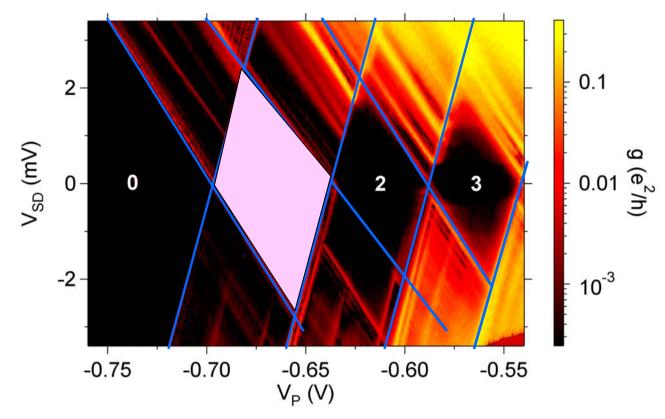
For $kT < \Delta$, each peak describes tunnelling into a single eigenstate. Wavefunction amplitude fluctuations lead to peak height fluctuations.

slide from J. Folk (2002)

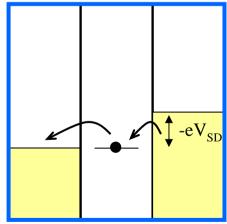
Coulomb Diamonds

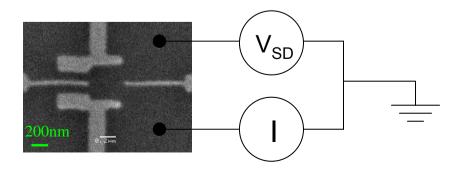


Coulomb Diamonds

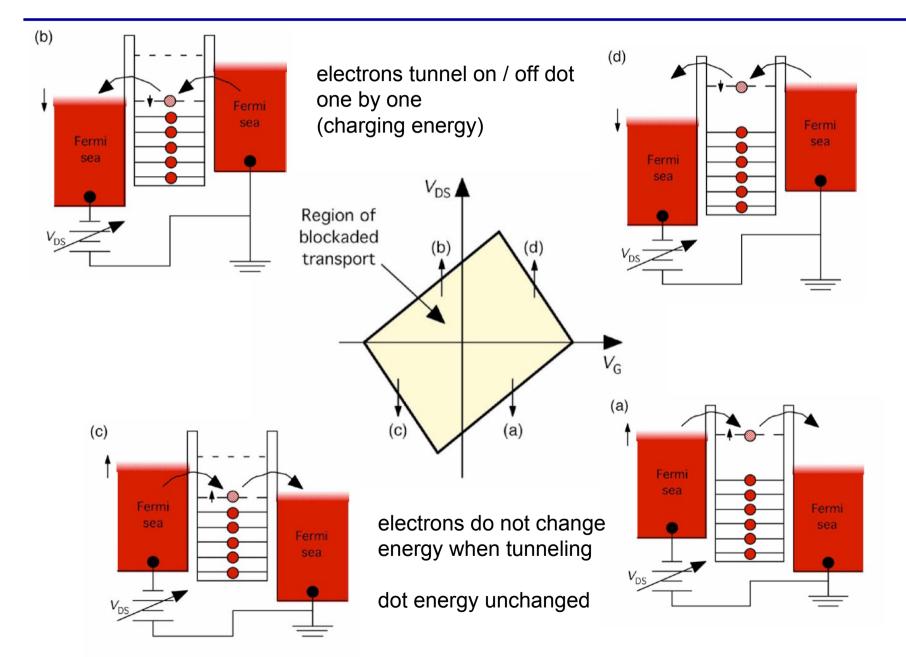


peaks in g appear when dot level aligned with either source or drain chemical potential

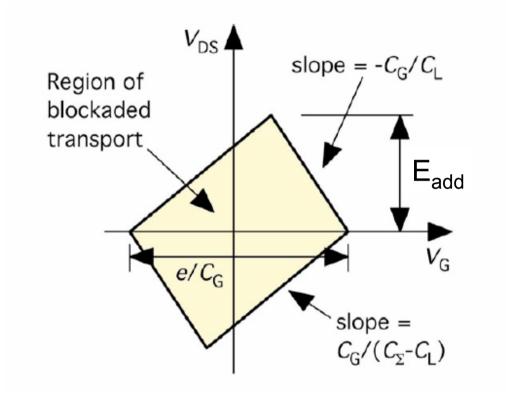




Coulomb Diamonds, Sequential Tunneling Transport

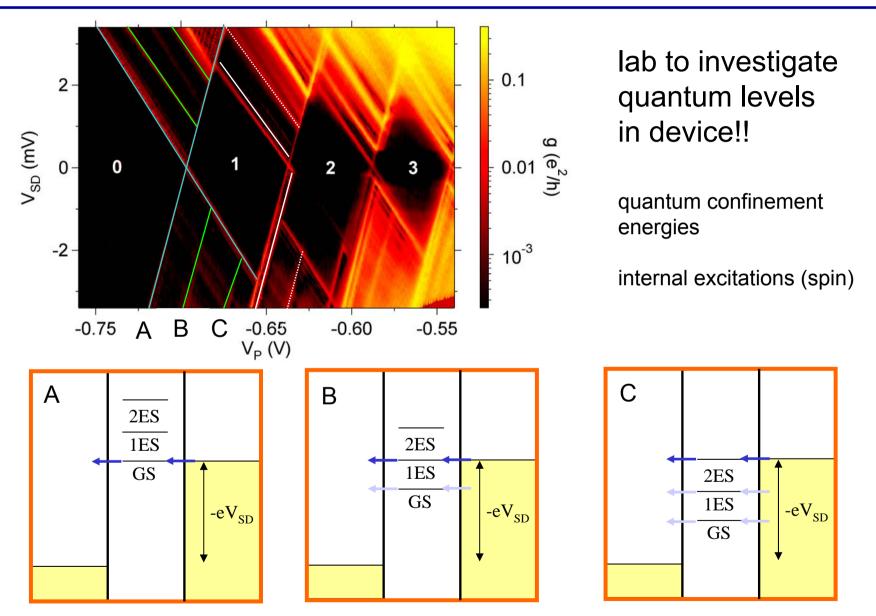


Coulomb Diamonds



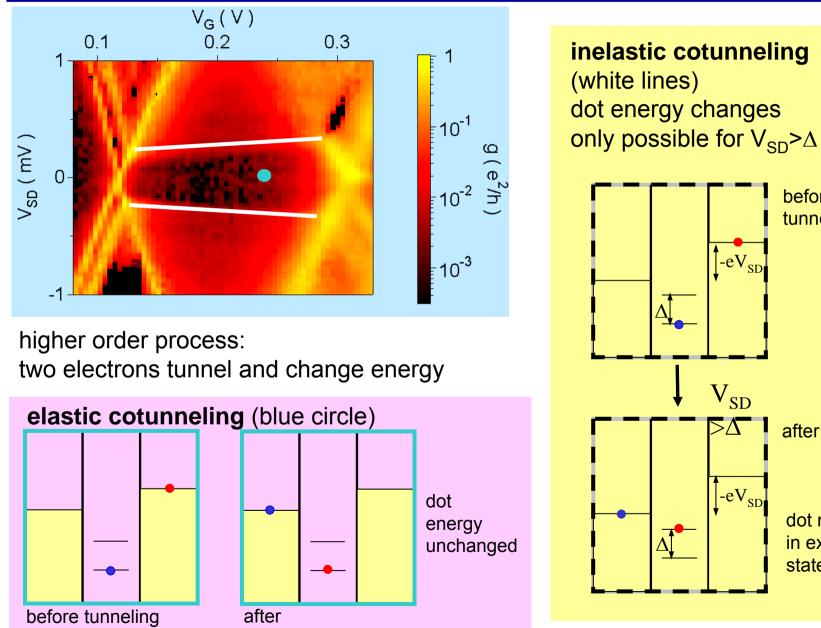
two slopes, each associated with its respective dot-lead capacitance

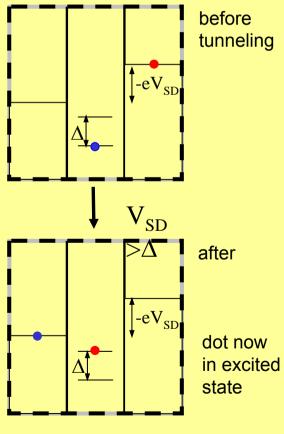
Excited State Spectroscopy: Sequential Transport



only one excess electron can be on dot (charging energy)

Cotunneling Transport





Temperature Regimes

$$\Delta, \, \frac{e^2}{C} \ll kT$$

no charging effects, no Coulomb blockade $g_{\infty} = \left(\frac{1}{g_L} + \frac{1}{g_R}\right)^{-1}$

$$\Gamma, \Delta \ll kT \ll \frac{e^2}{C}$$

classical Coulomb blockade (metallic CB) temperature broadened transport through several quantum dot energy levels

$$g \sim \frac{g_{\infty}}{2} \cosh^{-2}\left(\frac{\epsilon}{2.5kT}\right)$$

peak conductance idependent of T FWHM ~ 4.35kT

 $\Gamma = \Gamma_{L} + \Gamma_{R}$

escape broadening (tunneling rates)

Temperature Regimes

$$\Gamma \ll kT \ll \Delta \ll \frac{e^2}{C}$$

quantum Coulomb blockade temperature broadended regime resonant tunneling

transport through only one dot level

$$g \sim \frac{e^2}{h} \frac{\gamma}{4kT} \cosh^{-2}\left(\frac{\epsilon}{2kT}\right)$$

peak conductance 1/T FWHM ~ 3.5kT

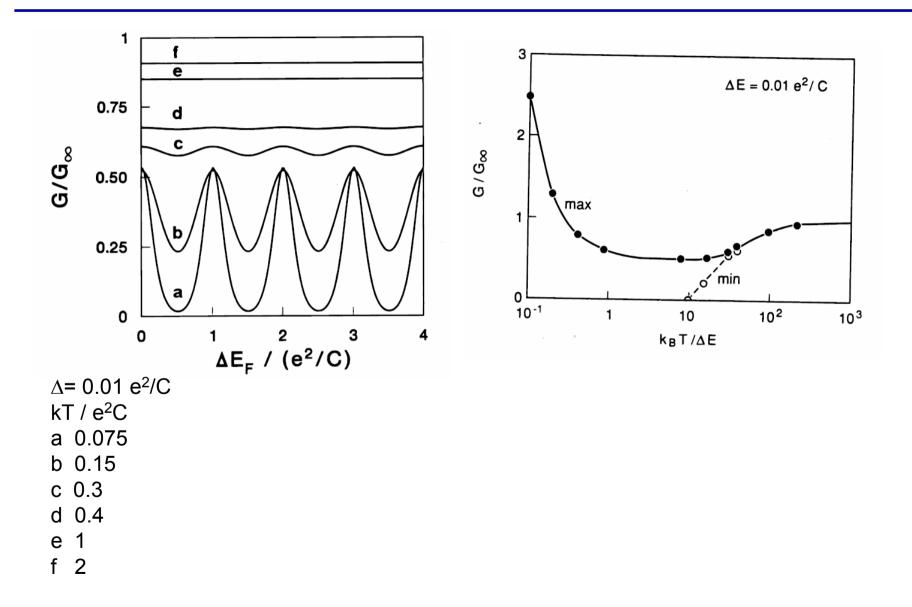
$$\gamma = \frac{\Gamma_L \Gamma_R}{\Gamma_L + \Gamma_R}$$

$$kT \ll \Gamma, \Delta \ll \frac{e^2}{C}$$

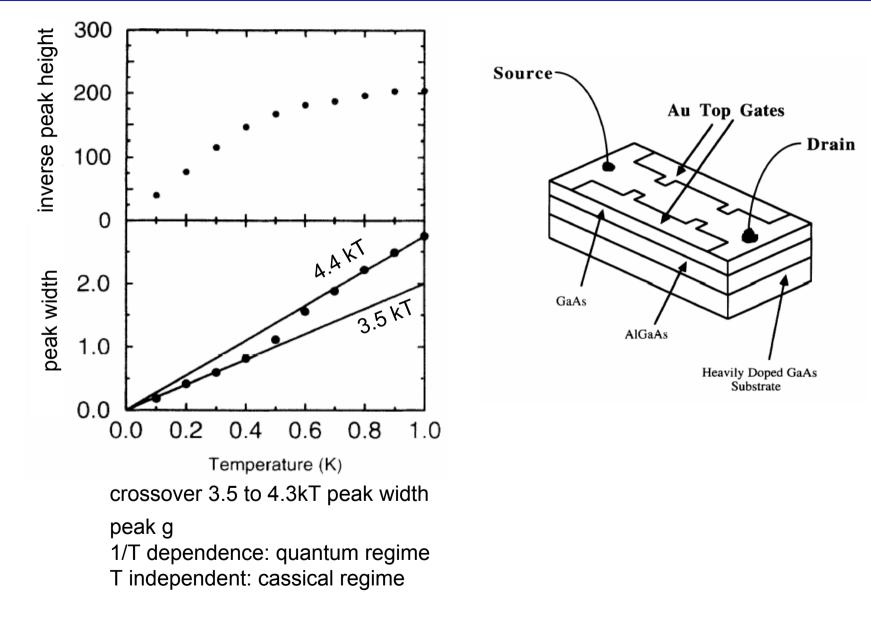
quantum Coulomb blockade lifetime broadended regime transport through only one dot level $g_{BW} \sim \frac{e^2}{h} \frac{\gamma \Gamma}{(\epsilon/\hbar)^2 + (\Gamma/2)^2}$

peak conductance e²/h indep. of T FWHM ~ Γ

Temperature Dependence: Theory



Temperature Dependence: Experiment



Foxman et al., PRB50, 14193 (1994)



Foxman et al., PRB47, 10020 (1993)

Charge Switching / Telegraph Noise

