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The discrepancies between reality and simulation impede the optimization and scalability of solid-state
quantum devices. Disorder induced by the unpredictable distribution of material defects is one of the major
contributions to the reality gap. We bridge this gap using physics-aware machine learning, in particular,
using an approach combining a physical model, deep learning, Gaussian random field, and Bayesian
inference. This approach enables us to infer the disorder potential of a nanoscale electronic device from
electron-transport data. This inference is validated by verifying the algorithm’s predictions about the gate-
voltage values required for a laterally defined quantum-dot device in AlGaAs/GaAs to produce current
features corresponding to a double-quantum-dot regime.
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I. INTRODUCTION

Differences between theory and experiment pervade all
of science and are one of the driving forces of human
discovery. Simulations often require fewer resources than
real experiments but rarely capture the full complexity of a
system, limiting their practical application. Narrowing the
gap between a model and the real world is key for the
control of complex systems using machine learning,
especially when a machine learning model is trained on
a simulation before being applied to real systems [1,2]. The
reality gap is widened further when there are quantities
which are not directly observable. Such unobservable
quantities may be estimated through their influence on
other characteristics of the system, for example, indirect
observation of black holes [3], observation of the signature
of Higgs boson decay [4], or machine learning estimation
of human poses from behind walls [5].
Solid-state quantum devices of nominally identical

design will often display different characteristics. This
variability hinders the scalability of otherwise promising
qubit realizations, such as in the spin states of electrons

confined in electrostatically defined quantum dots [6–8].
Different devices exhibit different electron-transport fea-
tures for identical gate-voltage values. This variability is
even observed in the same device after being exposed to
thermal cycling [9]. In particular, electrostatic disorder
induced by randomly located donor ions can be a
significant source of variability in delta-doped semicon-
ductor quantum-dot devices [10,11]. Recent theoretical
work has used deep learning to reconstruct disorder
potentials from partial local density-of-states calculations
[12]. Confinement potentials of individual quantum dots
have been probed using in-plane magnetic fields [13], but
there has been no quantitative experimental study of the
disorder present in these devices beyond the observation
of its effects [14].
Being able to observe disorder potentials and provide a

quantitative measure of the extent to which disorder
impacts transport properties could inform the growth of
semiconductor platforms for quantum device fabrication. It
would also benefit the operation of quantum devices, since
particular gate-voltage configurations could be chosen to
avoid the negative effects of steep gradients in the electro-
static environment. This is of particular importance in the
context of electron shuttling, a promising approach for
long-range coupling of spin qubits [15–17]. Once the
general characteristics of disorder are revealed, the design
of gate architectures can be tailored to allow for more
disorder-resilient device design. In this work, we enable
all these possibilities by quantifying the disorder potential
in a quantum device for an arbitrary gate architecture.
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The presence of disorder could previously be identified
only through its effects on the transport of electrons. To
gain this insight into the disorder potential, we use a
physics-aware machine learning approach.
Our approach produces disorder potentials through the

combination of a physical model accelerated by deep
learning, Bayesian inference informed by indirect exper-
imental measurements, and dimensionality reduction of the
2D disorder potential using inducing points and random
Fourier features. This novel combination can be applied to
observe spatial features of any hidden 2D function that
influences observations. Such a 2D function could describe
different sources of electrostatic disorder in different
material systems [8] or other scalar functions such as
temperature on chip [18,19]. In particular, we use transport
measurements of an electrostatically defined quantum-dot
device in an AlGaAs/GaAs heterostructure to inform and
verify our approach.
To infer the disorder potential, we use a combination of

transport measurements and predictions from a physical
model. The physical model is an electrostatic simulation
from which transport features can be estimated. Many
simulations with different parameter settings are required to
compare this physical model with transport measurements.
To accommodate this need without extreme computation
times, we develop a fast approximation of the model using
deep learning. In this way, we make our approach scalable
to large device architectures. Our approach can also be
adapted to different material systems by using the relevant
electrostatic simulation, such as the models considered in
Refs. [8,17,20].
The transport measurements and electrostatic

simulations inform the inference algorithm to produce
plausible disorder potentials, i.e., posterior samples.
The inference mechanism used in this paper follows
the philosophy of approximate Bayesian computation
[21–24] by utilizing the deep learning approximation
of the electrostatic model. Deep generative models
could be considered for producing disorder potentials,
similar to applications in the design of metasurfaces for
integrated photonics [25,26]. In contrast to the abstract
latent space of a deep generative model, our physical
model retains physical meaning throughout the inference
process.
A naive implementation of this inference still leads to

unrealistically expensive and wasteful computation.
This is because electrons are confined in a two-dimensional
electron gas (2DEG), and thus the disorder potential to be
inferred is a dense 2D function. We develop a novel
reparametrization to greatly reduce the dimensionality of
the inference problem, while selecting only the most
informative regions of the disorder potential. This maps
the nonparametric 2D disorder potential into a parametric
model where the parameter space retains physical meaning.
This reparametrization approximates the function in

the spatial and spectral domains simultaneously using an
inducing point approximation of aGaussian process [27–29]
and random Fourier features [30–35]. This approach can be
adapted to capture varying sources of disorder present in
different device realizations by choosing an appropriate
kernel for the Gaussian process.
To assess the performance of inference results, we use

the disorder potentials produced by the algorithm to predict
the electron-transport regime of new measurements. These
predictions provide good agreement with experiment,
indicating that our physics-aware method is effective.
The physical model can determine the number of quantum
dots at a given voltage location. Using posterior disorder
samples within this model allows us to predict the voltage
locations of double quantum dots and verify these pre-
dictions with the experiment in different thermal cycles of
the device. Our posterior samples also reproduce ground
truth disorders in simulation. Results show that our
physics-aware machine learning provides a clear advantage
over an uninformed model of the disorder potential when
predicting the location of double-quantum-dot features in
gate-voltage space.

II. THE DEVICE

A bias is applied to Ohmic contacts to drive current
through the device from source to drain, and applying
voltages to the gates allows for the control of this current.
With appropriate gate voltages, electrons may be confined
to form quantum dots. Current peaks as a function of the
gate voltage in transport measurements are a signature of
Coulomb blockade, indicating the formation of quantum
dots. A random distribution of Si donor ions contributes a
disordered component to the electrostatic potential expe-
rienced by electrons confined in a 2DEG. The distribution
of donor ions is thought to freeze at low temperatures with
rearrangement only possible significantly above device
operating temperature [36].
Our device has eight Ti=Au gate electrodes to which DC

voltages can be applied to control electron transport in a
2DEG within a GaAs=AlGaAs heterostructure [9,37]. The
gate architecture of the device used in the experiments is
depicted in Fig. 1(a), where each of the gate voltages can be
set to any value between 0 and−2 V. In our device, gate G6
is held at 0 V to avoid leakage currents. The device is
operated at millikelvin temperatures.

III. DEVICE MODEL

A. Electrostatics

As part of our physics-aware machine learning method
summarized in Fig. 1(b), we require a model of the
quantum-dot device. The effects of gate electrodes and
donor ions on the electron density in the 2DEG are
calculated self-consistently using the pinned surface model
[38,39]. Delta doping results in donor ions being randomly
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located in a plane at a constant height of 45 nm above the
2DEG. With r ¼ ðx; yÞ denoting a location in the 2DEG
plane, the total electrostatic potential is

ϕtotðrÞ ¼ ϕgðrÞ þ ϕdðrÞ þ ϕsðrÞ þ ϕeðrÞ; ð1Þ

where the electrostatic potential contributions are ϕg from
the gate electrodes, ϕd from the randomly located donor
ions, ϕs from surface states, and ϕe from the presence of
electrons in the 2DEG.
The potential ϕg results from the combined effect

of the potential from each gate electrode weighted by
the applied voltages. It has been shown that this model
underestimates the magnitude of ϕg [38], so we use
experimental data to fit an appropriate scale factor for
each thermal cycle as discussed in Appendix E. The
surface potential is determined by the Schottky barrier
with the gates, as discussed by Ref. [40]. Following
this work, we set the surface potential to a constant
value of ϕs ¼ −800 mV. The potential in the 2DEG
from a donor at location rk in the donor plane is

ϕdðr; rkÞ. The random potential from all donor ions is
then ϕdðrÞ ¼

P
k ϕdðr; rkÞ, summing over the location of

each donor. Examples of ϕg and ϕd are shown in Figs. 2(a)
and 2(b), respectively.
Calculated using the Thomas-Fermi approximation in

2D, the electron density contributes to ϕtot while also
depending on ϕtot. A self-consistent solution for ϕtot is
computed using an iterative under-relaxation process as in
Ref. [39], with an example shown in Fig. 2(c).

B. Modeling the transport regime

To model the transport regime of the device, we consider
the transport path of an electron from source to drain. If any
point on the transport path has a fully depleted electron
density, we say the classical channel for transport is closed
(i.e., current does not flow freely). When the channel is
closed, the device can be in the quantum-dot regime with
transport features from quantum tunneling events, or pinch-
off where no current flows at all. When scanning a random
combination of all gate voltages, we can approximate the
device as an open or closed channel.
A semiclassical electron trajectory between source and

drain is calculated by formulating ϕtot as a graph, where
each pixel is a node with nearest-neighbor edges weighted
by the mean of connected node values. The minimum
spanning tree (MST) [41] of the graph is calculated, and the
unique path from source to drain is determined as shown
in Fig. 2(e). With the electrostatic potential energy defined
as UðrÞ ¼ −eϕtotðrÞ, the path through the MST has the
minimum possible maximum value of U. The location of
this point will be called the minimax point, r� ¼ ðx�; y�Þ,
with U� ≡Uðr�Þ. If U� is greater than or equal to the
Fermi energy μF, the model transport channel is considered
closed.
The electron trajectory approximated by the MST path

can also be used to determine the number of quantum dots
formed by a given ϕtot. The number of dots defined in the
device can be determined using regions of the 1D MST
path where Uðr�Þ < μF, which are delimited by barriers
with Uðr�Þ ≥ μF. An example of the electron density
and path corresponding to a single dot in our model is
shown in Figs. 2(d)–2(f). Since dots in our device are two-
dimensional objects in the plane of the 2DEG, the one-
dimensional MST path from source to drain is not
sufficient to fully determine the number of dots.
Additional paths through the MST are calculated to ensure
dot labels are robust to all possible configurations of the
electron density. Transport features corresponding to
quantum dots can be observed only near the closed-
channel boundary due to tunnel barriers typically sup-
pressing current far beyond this boundary. The dots
identified using our model are not affected by this
limitation. An artificial limit on the distance from the
closed-channel boundary could be introduced, but this
may exclude potentially promising dot locations.
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FIG. 1. (a) Device geometry including the gate electrodes
(labeled G1–G8), donor ion plane, and an example disorder
potential experienced by confined electrons. Typical flow of
current from source to drain is indicated by the white arrow.
(b) Schematic of the disorder inference process. Colors indicate
the following: red for experimentally controllable variables,
green for quantities relevant to the electrostatic model, blue
for experimental device, and yellow for machine learning
methods. Dashed arrows represent the process of generating
training data for the deep learning approximation and are not part
of the disorder inference process.
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C. Deep learning approximation

For disorder inference, we require fast prediction of the
transport regime determined byU� in our model, given gate
voltages and a disorder potential. The self-consistent
electrostatic model and MST path require up to 10 sec
to calculate U� in serial computation. This computation
time is impractical for the large batches of U� required for
the inference algorithm. Deep learning methods, and their
ease of implementation on GPU hardware, allow for a
significant acceleration [42,43].
A convolutional neural network (CNN) is trained to

calculate ϕtotðr�Þ. The architecture of a CNN is particularly
suited to data in 2D grids such as the potentials in our
electrostatic model. Each input is a 2D potential capturing
the influence of the gates, disorder, and Schottky barrier
ϕin ¼ ϕg þ ϕd þ ϕs where ϕg and ϕd are randomly gen-
erated and ϕs remains constant. The output training data
consist of the self-consistent potential ϕtot and ϕtotðr�Þ
corresponding to each input, with U� ¼ −ϕtotðr�Þ in units
of electron volts. The complete mapping, expressed as
ϕin → ϕtot → ϕtotðr�Þ, is approximated by the CNN FU.
The resolution of ϕin and ϕtot is reduced from that used in
the electrostatic model to improve the performance of FU.
A series of resolution-preserving convolutions in a residual
neural-network architecture [44] learn the nonlinear trans-
formation ϕin → ϕtot, and further layers learn the mapping
ϕtot → ϕtotðr�Þ. A recurrent CNN [45] could have been
trained to generate the iterative solution; however, we
require only the self-consistent potential and not inter-
mediate potentials. Test results achieve a mean absolute
error (MAE) of 1.27 meV in U� estimations, with a 1.2%

error when classifying the transport regime using U�.
Batching inputs and using a GPU (GTX 1080 Ti) gives
a computation time of 0.6 ms for a single U� using FU, a
speedup of order 104 over the electrostatic model and path-
finding algorithm. This evaluation of U� is also signifi-
cantly faster than the measurement of current and remains
fast for a range of input resolutions, as shown in
Appendix B. This is relevant when considering the appli-
cability of our approach to larger and more complex
devices such as quantum-dot arrays which would require
evaluation ofU� over a wider area of electrostatic potential.
The parallel computation of CNN outputs surpasses any
acceleration which could be achieved by optimizing the
exact computation of transport channel and dot number
discussed in Sec. III, which cannot be parallelized.
To make predictions of voltage locations with a given

number of quantum dots using disorder inference results, a
fast method for counting dots is required. A second CNN is
trained to approximate the number of quantum dots at a
given set of gate voltages. The input is ϕin defined for FU
in the previous paragraph, with the output being the number
of dots, Ndot ∈ f0; 1; 2; 3g. The network learns the mapping
FD∶ ϕin → PðNdotÞ, where PðNdotÞ is the probability for a
given Ndot, and classification is determined by the maxi-
mum PðNdotÞ. Because of the sparsity of dots in gate-
voltage space, the training set used for FU is such that the
classifier cannot accurately determine Ndot, but only the
presence or absence of dots. We thus use an intermediate
classifier which produces a new training set that ideally
includes only gate voltages for which Ndot > 0. A mixture
of selected (dot-abundant) data and the original (dot-sparse)
data are used to train FD. When determining the maximum
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FIG. 2. An example of the device model as discussed in Sec. III. Spatial coordinates x and y are used to indicate the scale of the device.
(a) Electrostatic potential from the gate electrodes ϕg, (b) a disorder potential ϕd, and (c) self-consistent potential ϕtot given the potentials
in (a) and (b). (d) The electron density in the 2DEG given the potential in (c), which shows a single dot. (e) Example of MST path from
source to drain in 2D (yellow line) with the location of U� is marked by a green circle. (f) The potential energy U corresponding to the
MST path in (e) with U� marked by a green circle. The horizontal axis indicates the total distance moved in 2D space. The channel is
closed since the value of U� is above the Fermi level indicated by the red dashed line.
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number of dots in the direction of a given vector of gates
voltages,FD achieves 95.8% classification accuracy. Using
a GPU with batched inputs, the computation time for a
single classification with FD is 0.6 ms. Further details of
networks FU and FD can be found in Appendix B.

IV. INFERENCE ALGORITHM

A. Disorder potential reparametrization

The disorder potential used in the electrostatic model is a
dense 2D grid covering the entire 2DEG plane, as displayed
in Fig. 2(b). A dense grid is unnecessary for inference since
ϕd is continuous and values can be interpolated from a
sparse grid. Using a dense grid would be unfeasible even
with the reduced-resolution CNN inputs.
We propose a novel reparametrization algorithm, with

the objective to find a set of nZ locations Z¼frZk jk¼ 1;…;
nZg, where the disorder potential values on those locations
sufficiently determine the transport regime. Following the
literature of Gaussian process regression [27], Z defines a
set of inducing points. For the experiments in this paper, Z
is parametrized as a 14 × 14 uniform grid defined by two
corner points, with the initial grid shown in Fig. 3(a).
Our reparametrization requires the locations of the

inducing points Z as well as the values of the disorder
potential on these points, represented by a vector α ¼
½ϕdðrZ1 Þ;…;ϕdðrZnZÞ�. The full dense grid of ϕd cannot be
exactly recovered from the values onZ because the inducing
points are too sparse and random disorder potential varia-
tions between the points could influence the transport
regime. This variability is encoded in the vector β ¼
½ϵ1;…; ϵ2q� containing amplitudes of random Fourier fea-
tures [30–35], where q is the number of frequencies
considered. The parameters contained in β are thus depen-
dent on Z.
With optimal inducing points Zopt, the disorder potential

values contained in α sufficiently determine the transport
regime, while the contribution of random Fourier features
from β is marginal. A numerical optimizer is used to find
Zopt, where the optimization objective is to minimize the
effect of β on transport regime predictions made by FU.
During optimization, the disorder potential contributing to
the input of FU is approximately reconstructed from Z, α,
and β using a deterministic function f (see Appendix D),

ϕd ≈ ϕ̂ ¼ fðZ;α; βÞ: ð2Þ
The optimization of Z can be performed on simulated data,
and the optimized inducing points used by our inference
algorithm are shown in Fig. 3(b). We observe that the
inducing points are located where the transport channel is
more likely to be depleted, so that the disorder potential on
Zopt can determine the transport regime of the device. For
different device designs, Zopt will depend on the gate
electrode geometry, and the parameters nZ and q can be
chosen to maintain a tractable inference problem with

suitable resolution of Zopt for larger, more complex device
architectures. Detailed formulation and implementation of
the inducing point optimization algorithm can be found in
Appendix E.

B. Bayesian inference

To reconstruct the disorder potential, in addition to
determining Zopt, we must infer suitable values of α and
β. To do this, the inference algorithm requires measure-
ments of current in gate-voltage space. We generate random
directions in the seven-dimensional gate-voltage space,
each defined by a unit vector uj normalized such that
maxi juijj ¼ 1 and uij ≤ 0 for uij ∈uj. A specific voltage
location is defined as v ¼ Ruj, where R is the voltage
distance along uj. In particular, the inference algorithm
requires information about the location of the boundary
between open- and closed-channel transport. To obtain this
information, stored in a dataset D, a current trace is
conducted along a given uj from the origin at R ¼ 0 mV
to the device voltage limit at R ¼ 2000 mV. Each
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current trace contributes two entries in D; the voltages
immediately before and after current drop to half the
open-channel current, paired with y ¼ 1 and y ¼ 0,
respectively. The resulting dataset can be defined by
D ¼ fðvi; yiÞji ¼ 1;…; 2nug, where nu is the number of
unit vectors considered. We use nu ¼ 200 in this paper,
which is well below the typical data requirements of deep
learning methods used to predict features of quantum
devices [46,47].
To infer α and β using D, we define a prior

distribution pðα; βÞ and a likelihood of data pðDjα; βÞ.
The posterior distribution then follows the Bayes rule
pðα;βjDÞ∝pðDjα;βÞpðα;βÞ. In our formulation, pðα; βÞ
follows the multivariate normal distribution having the zero
mean vector and diagonal covariance matrix. The like-
lihood function utilizes the estimatedU� from the CNNFU
for each data point ðvi; yiÞ by calculating ϕg from v, and
approximating ϕd from α and β.
A set of ns posterior samples fðαi; βiÞji ¼ 1;…; nsg can

be drawn from Markov-chain Monte Carlo (MCMC)
methods. Using Eq. (2), the posterior samples of α and
β generate a set of 2D disorder potentials Sϕ̂¼fϕ̂iji¼1;…;
nsg, which can be used for CNN inputs. The CNN
computation is differentiable, unlike the electrostatic model
and path-finding algorithm, allowing us to use Hamiltonian
Monte Carlo [48] with TENSORFLOW PROBABILITY [49].

V. RESULTS

A. Transport channel prediction

From the Bayesian inference process, we obtain a set of
posterior samples of the disorder potential Sϕ̂. The standard
deviation of posterior inducing point values used to
generate Sϕ̂ is shown in Fig. 4 for three thermal cycles
of the same device. A low posterior standard deviation on
an inducing point means the inference algorithm has
learned more about the disorder potential at that location.
In each case, the posterior standard deviation is lowest in
regions surrounding gate G1 (the “nose”). This reflects the
possible locations of U� existing most frequently in these
locations, due to the primary role of G1 in depleting the
transport path from source to drain.
After performing inference of the disorder potential, the

set of posterior samples is used in the electrostatic model
approximated by FU. We verify the posterior prediction of
the distance RC required to close the transport channel in a
simulated and experimental device for a set of unit vectors,
fuiji ¼ 1;…; nvg. We set RC to be the point at which the
current drops below 50% of the open-channel current. For a
given u∈ fuiji ¼ 1;…; nvg, we calculate the mean value
of RC predicted using each posterior sample in Sϕ̂. To probe
the generality of inference results, we evaluate predictions
using the measurements which inform our inference (train-
ing data) and measurements which the inference algorithm

does not encounter (test data). The training and test datasets
use nv ¼ nu ¼ 200 and nv ¼ 300 unit vectors, respectively.
For a simulated device in which the true disorder can be

chosen but is hidden from the algorithm, we compare the
performance of random and posterior disorder potentials
when predicting the value of RC over five independent
iterations of the inference algorithm. Random disorder
potentials generated using the electrostatic model with
randomly located donor ions predict RC with a mean
absolute percentage error (MAPE) of 7.0% across training
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and test data. In contrast, posterior samples predict the
value of RC with a MAPE of 0.3% on training data and
0.5% on test data. These results show that the inference
algorithm is successful in finding disorder potentials which
effectively describe features of a simulated device.
We then verify the posterior prediction of RC in a real

device. Thermal cycling the device four times, we run a
total of five iterations of the inference algorithm. The value
of RC is predicted with a MAPE of 1.5% for training data
and 2.0% for test data. The MAE of RC predictions is 24.3
and 31.9 mV for training and test data, respectively.
Random disorder potentials predict RC with a MAPE of
7.5% across training and test data. The inference results are
thus effective in predicting the gate voltages which close
the transport channel in a real device. The added complex-
ities of fabrication and materials defects, as well as a
quantum-mechanical treatment of transport features such as
Coulomb peaks are not considered by our electrostatic
model, and hence not directly captured by the Gaussian
process, which may contribute to the reduced performance
of the inference algorithm compared to the simulated
device. Still, this extra complexity may be partially cap-
tured by our inference algorithm, since a Gaussian process
contains greater flexibility than a direct fit of a physical

model. This flexibility, combined with an appropriate
Gaussian process kernel, is imperative to the applicability
of this algorithm to different device realizations.

B. Double-dot prediction

Having demonstrated the success of the inference
algorithm in determining the values of RC, we use the
posterior disorder samples to predict transport features
beyond the training domain of the inducing point optimi-
zation and inference algorithm. We specifically consider
features corresponding to the double-quantum-dot regime.
We implement a method requiring minimal knowledge of
the transport characteristics of a particular device. Three
pieces of information are required: (i) quantum dots form
near the closed-channel boundary, (ii) gates G3 and G7 in
our device couple most strongly to dot energy levels, and
(iii) double quantum dots form features with periodicity in
two gate-voltage directions in transport measurements.
The method of finding double quantum dots using

posterior disorder samples is summarized in Fig. 5(a).
Random unit vectors u are generated and scanned from
R ¼ 0 mV to R ¼ 2000 mV in the simulated device.
A randomly chosen unit vector is unlikely to lead to
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FIG. 5. (a) Predicting double-dot locations. A unit vector u is passed to the filter which determines whether the vector is considered for
the test device (which can be a real or simulated device). The filter uses the dot classifier FD to scan along v ¼ Ru for each of the ns
disorder samples, and the score is increased for each disorder sample which produces a double dot in the scan. Posterior disorder samples
from the inference algorithm are shown. Vectors with a score greater than ns=3 are accepted to be tested. An example current trace (solid
blue line) of a voltage vector from the origin to the limit of device operation is shown. The dashed red line indicates the 80% threshold
used to begin 2D current scans over gates G3 and G7. The 2D scans are taken at intervals along the original current trace (indicated by
red circles). The resulting 2D current scans are passed to multiple human experts to label the presence of double quantum dots.
(b) Example current scans over G3 and G7 which score highly for double dots when labeled by six human experts for three different unit
vectors. Each scan is a 200 mV × 200 mV window with the voltages associated with the direction of u at the center.
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double-dot transport features given the sparsity of double
dots in voltage space. Based on predictions made byFD for
each posterior disorder, we select candidate voltage vectors.
If FD detects a double dot along a vector for a given
posterior disorder, the vector’s score is increased by 1.
Vectors with a score greater than a selected threshold
(taken to be ns=3) are accepted to be investigated further in
a test device.
Accepted vectors indicate only a direction in gate-

voltage space in which double-quantum-dot features could
be observed in a test device. As these features are expected
to be found near the closed-channel boundary in transport
measurements, we investigate multiple voltage locations
near this boundary along each accepted vector. To inves-
tigate each accepted u, an automated protocol performs a
current trace along u from the origin to the device voltage
limit. The gate voltages are then set to the boundary
between open- and closed-channel regimes along u,
identified by a drop of 20% from open-channel current.
To allow for the identification of double-quantum-dot
transport features, gates G3 and G7 are scanned in a
200 mV × 200 mV window centered at this gate-voltage
location. Such 2D scans are subsequently performed at
intervals of 13.3 mV in R along the direction of u until the
maximum current value in a 2D scan drops below 100 pA.
The 2D scans are labeled by six human experts to
determine the presence of double-quantum-dot features
along u. Multiple human experts are required as double-
quantum-dot features are often subjective to human labelers
and difficult to identify computationally [9]. Further details
of the vector filtering can be found in Appendix G with
example labeling of 2D scans shown in the Supplemental
Material [50].
Similar to our RC predictions, we first test the predictive

power of posterior disorders in a simulated device in which
the true disorder potential is known. By selecting random
unit vectors, we find a mean double-dot occurrence rate of
0.83% using several random disorder potentials generated
using the electrostatic model with randomly located donor
ions. We thus perform disorder inference followed by
vector filtering. We do not scan gates G3 and G7 as in
the real device since FD can determine the number of dots
at a point in voltage space. After performing vector filter-
ing, double dots are correctly identified in 28% of instances
using random disorders and in 67% of instances using
posterior samples. This demonstrates that posterior disorder
samples have greater predictive power than random dis-
order potentials.
In the real device, we produce two sets of posterior

samples from independent iterations of disorder inference.
Accepted vectors and the associated labels from both
iterations are combined to provide larger sets of results
using posterior and random disorders. Examples of 2D
current scans which score highly for double-quantum-dot
features are shown in Fig. 5(b). To assess the success of our
dot prediction method, a binomial distribution is fitted to

posterior and random results, where the probability of
finding a double dot along an accepted voltage vector is
PðDDÞ ¼ p, with PðDDÞ ¼ 1 − p. The fit results in
95% confidence intervals of 0.235 < ppost < 0.449 using
posterior samples, and 0.004 < prand < 0.149 using ran-
dom disorders.
These values, with a separation of the 95% confidence

intervals, demonstrate that using posterior disorders results
in a higher rate of success than random disorders in finding
experimental double quantum dots. Our results show that
the inference algorithm produces disorder potentials with
predictive power beyond the original domain of training
data and can reduce the human expertise required to tune a
double quantum dot.
In addition to the comparison of random and posterior

disorders, we also perform the filtering process with
featureless (i.e., constant-valued) disorder potentials.
Fewer vectors are accepted to be tested than when using
posterior or random disorders, and vectors which produce
the highest scoring 2D scans, identified in results of
posterior disorder predictions, are not found. Further details
can be found in Appendix G.

VI. CONCLUSION

We demonstrate that hidden disorder in a nanoscale
electronic device can be inferred with indirect measure-
ments and physics-aware machine learning. The repara-
metrization of the disorder potential proves effective in
reducing the dimensionality of the problem, and the
successful acceleration of an electrostatic model with a
differentiable convolutional neural network allows for
Bayesian inference. The entire inference process, from
inducing point location optimization to selecting posterior
samples, is general and applicable to any gate structure.
The device specifics are contained in the electrostatic
model and can easily be adapted to other gate architectures
and materials. For example, in Ref. [20] we adapt the
electrostatic model for a linear dot device laterally defined
in a SiGe heterostructure obtaining good agreement with
experiment for a device confining holes instead of electrons
and with a different gate geometry. Different device
realizations can also be considered by using an appropriate
physical model and updating the Gaussian process kernel to
capture the disorder characteristics.
The prediction of double-dot locations using both

random and posterior disorders shows the benefits of
model-assisted tuning, and results indicate that the pos-
terior disorders perform better in this task for various
thermal cycles of the device. We therefore conclude that the
use of physics-aware machine learning narrows the reality
gap. The remaining gap between simulation and experi-
ment can be attributed to further unknowns such as
fabrication defects in gate design, material defects, and
quantum transport properties which are not considered in
our physical model. Even with the added complexity of real
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devices, the predictive power of posterior disorders indi-
cates that the inference algorithm has the flexibility to
effectively capture the electrostatic landscape, and is thus
applicable to different types of devices. The generality of
this method and the minimal data required for inference are
promising qualities for future utility in understanding
nanoscale quantum devices. The inference algorithm can
be easily scaled to larger, more complex devices. In this
way, our approach could be used to study the variability of
devices in large arrays, extending over micro- and milli-
meter areas [51–53]. While our results demonstrate a way
to bridge the reality gap introduced by disorder, future
devices may be suitably designed such that the gap induced
by disorder is no longer crucial to understanding device
operation. An alternative combination of deep learning and
Bayesian inference could assist in the design of gate
architectures which are robust to the impact of disorder.
Machine-learning-assisted device design is a promising
path forward, and may pave the way for truly scalable
quantum devices.

ACKNOWLEDGMENTS

We acknowledge J. Zimmerman and A. C. Gossard for
the growth of the AlGaAs/GaAs heterostructure. D. C.
would like to thank E. M. Gauger for support and useful
discussions on this manuscript. This work was supported
by the Royal Society (Grant No. URF\R1\191150), the
EPSRC National Quantum Technology Hub in Networked
Quantum Information Technology (Grant No. EP/
M013243/1), Quantum Technology Capital (Grant
No. EP/N014995/1), EPSRC Platform Grant (Grant
No. EP/R029229/1), the European Research Council
(Grant Agreement No. 948932), FQXi Grant No. FQXI-
IAF19-01, the Swiss NSF Project No. 179024, the Swiss
Nanoscience Institute, the NCCR SPIN, and the EU H2020
European Microkelvin Platform EMP Grant No. 824109.
We acknowledge the use of the University of Oxford
Advanced Research Computing facility in carrying out
this work.

D. L. C. and H.M. contributed equally to this work.

APPENDIX A: PHYSICAL MODEL

The gate electrodes exist on the surface of the device, and
the potential from each gate at a depth d ¼ 115 nm beneath
the gates in the plane of the 2DEG is determined using
analytic expressions. A further 5 nm is added to the depth
of the AlGaAs=GaAs heterojunction (110 nm) to account
for the extent of the electron density beyond this junction.
A representation of the gates is taken from an SEM image
of a device of identical design. The image of each gate is
used, and the potential from each pixel is calculated
individually and summed to give the total potential from
each gate ϕgiðrÞ. The total gate potential is

ϕgðrÞ ¼ GSF

X
i

viϕgiðrÞ; ðA1Þ

where the sum is over all gates and vi is the voltage applied
to the ith gate. The gate scale factor GSF is used as the
pinned surface model underestimates the magnitude of the
gate potential. This underestimation is observed when gate
voltages stop current in the experimental device but do not
deplete the transport path from source to drain in the
simulated device.
Donor ions exist in a plane at a constant height

h ¼ 45 nm above the 2DEG. The potential in the 2DEG
from a single donor ion at location rij ¼ ðxi; yjÞ in the
donor plane is

ϕdðr; rijÞ ¼
e

4πϵϵ0
½ðjr − rijj2 þ h2Þ−1=2

− ðjr − rijj2 þ ð2d − hÞ2Þ−1=2�: ðA2Þ

The potential from each donor ion is summed to give the
disorder potential ϕdðrÞ.
The electron number density is calculated using the

Thomas-Fermi approximation in 2D,

nðrÞ ¼ 2
m�

πℏ2
ðμF −UðrÞÞΘðμF −UðrÞÞ;

wherem� is the effective mass of an electron in GaAs, μF is
the chemical potential or Fermi level of the 2DEG which is
set to zero, and Θð·Þ is the Heaviside step function. The
factor of 2 accounts for spin degeneracy, and the Heaviside
step function approximates the Fermi distribution at low
temperatures. The electrostatic potential associated with the
electron density is

ϕeðrÞ ¼ −
e

4πϵϵ0

Z
dr0

nðr0Þ
jr − r0j :

A self-consistent solution is computed using an iterative
under-relaxation process. The device is fabricated from a
wafer (Gossard-060926C) with 2DEG density n ¼ 2.64 ×
1015 m−2 and delta-doping density nδ ≈ 6 × 1016 m−2. As
the 2DEG density can be accurately measured, and there is
no guarantee that all Si donors become effective dopants,
we fit nδ such that the electrostatic model produces the
known 2DEG density. The fitted value is nδ ¼ 1.25 ×
1016 m−2 giving a calculated mean electron density of
hni ¼ ð2.64� 0.04Þ × 1015 m−2, which is the mean and
standard deviation uncertainty of 100 calculations. This
value is in agreement with the experimental value
of 2.64 × 1015 m−2.
A semiclassical trajectory of electrons between source

and drain is calculated by formulating the 2D potential ϕtot
as a graph Gϕ, where each pixel is a node. Gϕ is defined as
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Gϕ ¼ ðV; EÞ; V ¼ fvig; E ¼ feijg;

vi ¼ UðriÞ; eij ¼
1

2
½vi þ vj�; ðA3Þ

where V is the set of nodes inGϕ with vi the value of the ith
node, and E is the set of edges in Gϕ with eij the edge
connecting vi and nearest neighbor vj.
The Dijkstra algorithm results in a path from source to

drain throughGϕ, but this path overestimates the maximum
potential energy of an electron along the path. Gate
voltages which close the transport channel are then under-
estimated by our model. As we discuss in the main text,
calculating the MST of Gϕ resolves this issue by providing
a unique path connecting source and drain with a minimum
sum of edge weights. A comparison of trajectories com-
puted using the full graph and the MST is shown in Fig. 6.
Such trajectories allow for the number of quantum dots in
the transport channel to be counted.

APPENDIX B: DEEP LEARNING

A deep CNN, denoted FU, is trained to approximate
U� given gate voltages and a disorder potential. The
training dataset contains 85 000 entries with each input
being a potential profile ϕin ¼ ϕg þ ϕd þ ϕs where ϕg and
ϕd are randomly generated. The output training data consist
of the self-consistent potential ϕtot and ϕtotðr�Þ with
U� ¼ −ϕtotðr�Þ. Training is performed for 100 epochs
with a learning rate of 1 × 10−3 (dropping to 2.5 × 10−4

in two steps) and a mean squared error loss function. The
resolution of each input is reduced from the high resolution
required to accurately compute the training data, with test
results shown in Table I.
Another CNN learns the mapping FD∶ ϕin → PðNdotÞ

for Ndot ∈ f0; 1; 2; 3g, where classification is taken as the
maximum value of PðNdotÞ. An intermediate classifier is
used to generate a suitable dataset, as discussed in the main
text. Training is performed for 100 epochs with a learning
rate of 1 × 10−3 dropping to 5 × 10−4 after 70 epochs. Test
results for dot classification have an accuracy of 98.0% on
random data (dot-sparse) and 75.9% on selected (dot-
abundant) data.
Following the notation used in Table I, FU and FD

use 1
8
and 1

6
resolution of ϕin, respectively. The computation

time for both networksFU andFD is approximately 0.2 ms
given a 2D potential input and using a GPU. However,
processing a vector of gate voltages into a 2D potential
increases this time to 0.6 ms. The processing involves
determining the total gate potential using Eq. (A1) and
summing this with the disorder potential. Schematics of the
neural-network architectures are shown in the Supplemental
Material [50].

APPENDIX C: DISORDER COVARIANCE

A Gaussian process requiring a covariance function of
the random disorder potential is used to generate random
disorder potentials in the inference algorithm. The donor
plane is divided into cells, with a random variable Iij ∈N0

determining the number of donors in the cell at
rij ¼ ðxi; yjÞ. The potential of the 2DEG from the donor
ion distribution is given by ϕdðrÞ ¼

P
ij Iijϕdðr; rijÞ,

summing over each cell in the donor plane.
The covariance between two points in the 2DEG plane

can be evaluated numerically, and appropriate kernel
parameters are fitted. The covariance of ϕd between two
points in the 2DEG plane can be computed numerically as
covðr; r0Þ ¼ varðIÞPij ϕdðr; rijÞϕdðr0; rijÞ, where I is the
distribution from which each Iij is independently drawn.

TABLE I. Performance metrics of FU for different resolutions
of ϕin computed using a GPU (GTX 1080 Ti). Max-pooling
processes are adapted for each resolution, otherwise the networks
are identical. The resolution reduction fraction is applied to both
input dimensions. Full resolution (269 411) is required only for
computing training data, so it is not considered. Time per output
is from a batch of 1000 inputs. MAE is chosen so that units
remain in mV, and the transport channel error is based on binary
classification using the value of ϕtotðr�Þ produced by FU.

ϕin resolution fraction 1
2

1
4

1
6

1
8

Time per training epoch (s) 430 130 69 65
Time per output (ms) 1.66 0.46 0.24 0.18
ϕtotðr�Þ: test MAE (mV) 1.41 1.18 1.25 1.27
Transport channel: test error (%) 1.57 1.23 0.96 1.20
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FIG. 6. Comparison of the semiclassical electron trajectory for
(a) the full graph Gϕ and (b) the MST of Gϕ at identical gate
voltages. The electron density with the relevant transport
path (yellow line) is shown in the upper plot of each panel. The
potential along each path (blue line) is shown in the lower plot of
each panel, where the Fermi energy μF is indicated by a red dashed
line. The “Distance” axis indicates the total distance moved in
2D space. The transport path using the full graph overestimates
the potential barrier height as it shows two regions whereU > μF.
The electron density demonstrates that there is only one region
where U > μF, matching the prediction of the MST path.
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Using the correlation function eliminates the dependence
on I,

corrðr; r0Þ ¼
P

ijϕdðr; rijÞϕdðr0; rijÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijϕdðr; rijÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijϕdðr0; rijÞ2

q : ðC1Þ

A rational quadratic kernel function

kðr; r0Þ ¼ σ

�
1þ jr − r0j2

ρ2

�
−1

ðC2Þ

is chosen, with fitted values of ρ ¼ 139.8 nm and σ ¼
20.8 mV. Alternative kernels provide better fits, but the
explicit form of the corresponding frequency distribution of
randomFourier features is unknown or intractable. Different
sources of disorder which may be present in other device
realizations can be modeled by choosing an appropriate
Gaussian process kernel. Kernel parameters can be fitted
using physical models, such as in Ref. [8], which considers
charge defects and bond disorder in Si/SiGe devices.

APPENDIX D: REPARAMETRIZATION

Let X ¼ frXk jk ¼ 1;…; nXg denote the set of dense grid
points (34 × 52 or 45 × 69 for the experiments in the paper,
depending on the CNN model) on the x − y plane, the
potential of which is the input of the CNN. Without any
measurement, the disorder potential values on X denoted by
ϕX is approximately a random vector following the normal
distribution:

ϕX ∼N ðm1; KXÞ;
where m is the precalculated mean potential level, 1 is a
one-filled vector, and KX is the covariance matrix, whose
element ði; jÞ is kðrXi ; rXj Þ. The value of m ¼ 1184 mV is
determined from the mean values of 1000 random disorder
potentials generated using the electrostatic model (with ϕs
absorbed into the disorder potential,m ¼ 384 mV). For the
sake of simplicity, the derivations below are based on the
mean-adjusted potential: f ¼ ϕX −m1. In order to generate
a random sample from f, we can draw a random sample
from ϵX ∼N ð0; IXÞ and then transform it as

f ¼ LXϵX; ðD1Þ
where 0 is a zero-filled vector, IX is the nX × nX identity
matrix, and LX is the lower Cholesky decomposition of KX.
Since nX is too large for a practical Bayesian inference

problem, and we want to make the inference algorithm
independent of nX, the inducing point approach is
used. The set of inducing points Z ¼ frZk jk ¼ 1;…; nZg
usually has many fewer points than X: nZ < nX. Let u
denote the vector of the mean-adjusted potential values at Z
(i.e., u ¼ α −m1 using notation from the main text). The
two mean-adjusted potential vectors f and u are jointly a
normal distribution, and the joint distribution can be

decomposed into two terms: pðu; fÞ ¼ pðuÞpðfjuÞ. The
first term is a prior distribution pðuÞ ¼ N ðu; 0; KZÞ, where
KZ is the covariance matrix, whose element ði; jÞ is
kðrZi ; rZj Þ. The second term is the conditional distribution
of f given u:

pðfjuÞ ¼ N ðfjKXZK−1
Z u; KX − KXZK−1

Z KZXÞ: ðD2Þ
The computational complexity of generating samples

from fju is Oðn3XÞ because of the covariance matrix in
Eq. (D2). To reduce the computational complexity, any
low-rank approximation can be used. In this paper, we
approximate the covariance matrix with spectral features.
The idea behind this approach is to let inducing points take
account of spatially important locations, and the spectral
features control relatively unimportant spatial information.
The approximation of many types of covariance kernel
functions with spectral features is extensively studied in the
context of random Fourier features [30–35].
The spectral feature is

ψðrÞ¼ 1ffiffiffi
q

p ½cosðω⊤
1 rÞ;sinðω⊤

1 rÞ;…;cosðω⊤
q rÞ;sinðω⊤

q rÞ�;

where q is an arbitrary chosen integer satisfying nZ <
2q < nX, and wi is a random sample whose probability
density function depends on the underlying covariance
kernel function.We use q ¼ 300 in this work. The nz < 2q
inequality ensuresΨZΨ⊤

Z (defined below) is invertible, and
2q < nx ensures that an advantage is gained in computa-
tional complexity when using random Fourier features.
The corresponding probability distribution of the sam-

ples ω1;…;ωq given the kernel function (C2) is

pðωÞ ¼ ρe−ρkωk1 ;

where ω is an angular frequency, and k · k1 is the L1 norm
function.
The prior covariance matrices KX and KZ are approxi-

mated by the spectral features:KX≈ΨXΨ⊤
X andKZ≈ΨZΨ⊤

Z ,
whereΨX ∈RnX×2q with ψðrÞ⊤ for r∈X as rows, andΨZ is
defined in a similar fashion. The posterior covariance in
Eq. (D2) is approximated as covðfjuÞ ≈ Ψ̄XΨ̄⊤

X , where
Ψ̄X ¼ ΨX −ΨXΨ⊤

Z ðΨZΨ⊤
Z Þ−1ΨZ. The approximated ran-

dom field by substituting the approximated covariance
matrix into Eq. (D2) is

f ≈ KXZL−1
Z

⊤ϵZ þ Ψ̄Xϵ2q; ðD3Þ
where ϵZ and ϵ2q are standard normal random vectors with
length nZ and 2q, respectively, andLZ is the lower Cholesky
decomposition of KZ. The approximated posterior random
vector is straightforward,

fju ≈ KXZL−1
Z

⊤uþ Ψ̄Xϵ2q: ðD4Þ
The equation defines the reconstruction of ϕX through the
function
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ϕX ≈ fðZ;u; ϵ2qÞ ¼ KXZL−1
Z

⊤uþ Ψ̄Xϵ2q þm1

using the mean-adjusted values, and

ϕ̂ ¼ fðZ;α; βÞ ¼ KXZL−1
Z

⊤ðα −m1Þ þ Ψ̄Xβþm1

using the notation in Eq. (2) where α ¼ uþm1,
and β ¼ ϵ2q.

APPENDIX E: DETAILED INFERENCE
ALGORITHM

1. Overview

The posterior inference requires two prerequisites with
no interdependence: (i) fixing a gate scale factor GSF and
(ii) optimizing the inducing points. The gate voltages are
multiplied by the gate scale factor. The gate scale factor is
optimized by maximizing the likelihood of the observations
with assuming the disorder is perfectly flat. Optimized
scale factor values range from 3.48 to 3.94 for runs of the
inference algorithm on different thermal cycles.

2. Inducing points optimization

Before obtaining any measurements, the inducing point
optimization can be conducted with simulated data. The
inducing point optimization is expensive to compute, but
the computation time is not critical, because the optimiza-
tion has to be performed only once for a given gate
architecture. Algorithm 1 shows the optimization pro-
cedure. Line number 10 in Algorithm 1 is important: It
generates a posterior random sample with the information
fZ;ug. The sample retains only information about ϕd at Z.
For the experiments, we use Eq. (D2) for the posterior
sampling, and the approximated distribution (D4) can be
used if the computation speed matters.
For the input of Algorithm 1, Eq. (D1) is used for

generating ΦX
sim. Each element of Vsim is generated by

choosing a disorder randomly from ΦX
sim, then choosing a

pair of voltage vectors near the closed-channel boundary
with uniform direction sampling in Ref. [9]. The function
KLðp;p0Þ computes pi logðpi=p0

iÞþð1−piÞ logðð1−piÞ=
ð1−p0

iÞÞ elementwise for p and p0, then it computes the
average of them. For the experiments in the paper, nd and
nv are set to 20, and the ADAM optimizer is used. The
current probability prediction F prob

U uses the CNN model
FU and a sigmoid function:

F prob
U ðϕd; vÞ ¼ σξðFU(gðϕd; vÞ); 10Þ;

where gðϕd; vÞ computes ϕin on the dense grid for
CNN (see Sec. III C), and σξ is a modified sigmoid func-
tion with steepness parameter and margin σξð·; 10Þ ¼
ξþ ð1 − 2ξÞσð·; 10Þ. The margin ξ ¼ 0.01 allows discrep-
ancy between our approximated model and the real-world
measurement, and the steepness parameter set to 10 makes
a relatively sharp probability of electric current while

allowing the function differentiable. The differentiability
is required to use the ADAM optimizer.

3. MCMC inference

The goal of the MCMC inference is to generate random
samples from the posterior distribution of uncertain vari-
ables. The uncertain variables in Eq. (D4) are u and ϵ2q. the
posterior probability density function (PDF) of ðu; ϵ2qÞ
given observed current measurement D is

pðu;ϵ2qjDÞ∝
Yn
i¼1

F prob
U (fðX;u;ϵ2qÞ;vi)yi

× ½1−F prob
U (fðX;u;ϵ2qÞ;vi)�1−yipðuÞpðϵ2qÞ:

The prior distributions pðuÞ and pðϵ2qÞ are defined in
Appendix D. A binomial likelihood function is used for the
ith measurement where F prob

U (fðX;u; ϵ2qÞ; vi) is the prob-
ability of current flowing at voltages vi. For the experi-
ments in this paper, a Hamiltonian Monte Carlo is used
with the posterior PDF. Evaluating the likelihood function
with sufficient speed to maintain practical inference times
is facilitated by using CNN computation of FUð·Þ on GPU
hardware. Each time MCMC inference is performed, a
different number of posterior samples are generated. In our
work, we find typical values to be 150 < ns < 320.

APPENDIX F: INFERENCE RESULTS

The number of inducing points with a low posterior
standard deviation increases with the size of the training

Algorithm 1. Inducing point optimization.

Input: Set of randomly generated disordersΦX
sim, set of randomly

generated voltages Vsim, initial inducing points Zinit, minibatch
size of disorders nd, minibatch size of voltages nv, Gaussian
process kernel k for disorder, optimizer parameters θopt, CNN

model for current probability prediction F prob
U

Output: Optimized inducing points Z
1: opt ← Adam optimizerðθoptÞ
2: Z ← Zinit
3: while Stopping criterion not satisfied do
4: ΦX

mini ← choose random nd samples from ΦX
sim

5: Vmini ← choose random nv samples from Vsim
6: loss ← 0
7: for all ϕd ∈ΦX

mini and v∈Vmini do
8: p ← F prob

U ðϕd; vÞ
9: u ← interpolated values of ϕd at Z
10: ϕ0

d← a random sample from the posterior GP with fZ;ug
11: p0 ← F prob

U ðϕ0
d; vÞ

12: l ← KLðp0;pÞ þ KLðp;p0Þ
13: loss ← lossþ l
14: end for
15: Z ← opt:updateðloss; ZÞ
16: end while
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dataset, as shown in Fig. 7. This indicates that the inference
algorithm gains information about a larger area of the
disorder potential by considering more directions in voltage
space. We can also observe that even for a small training
dataset, the inference results are most confident about the
disorder potential values at the tip of gate G1 which reflects
its role in depleting the electron density along the path from
source to drain.
Figure 8 shows the true disorder and posterior samples

for an iteration of the inference algorithm on a simulated
device. The posterior samples exhibit much more detailed
features inside the region spanned by the optimized
inducing points where qualitative similarities with the true
disorder observed. This further demonstrates the informa-
tion gained at these points (in addition to Fig. 7).
For posterior disorder potentials, features outside the

inducing point region are governed by the amplitudes of
random Fourier features contained in β, which are neces-
sary to ensure the posterior samples are continuous and
suitable to be used as inputs to FU and FD.

APPENDIX G: DOUBLE-DOT FILTERING

We perform five independent iterations of the inference
algorithm on a simulated device, where each iteration uses
a different true disorder potential. The output of FD with
the true disorder is used as the ground truth when
determining whether a vector produces a double dot. For
each true disorder potential, we generate a dataset of
random unit vectors where exactly half of the vectors show

double dots (dataset size is either 500 or 1000 vectors
depending on the iteration). Using the simulated device,
this filtering process allows us to determine the mean
false-positive rate (FPR) and mean true-positive rate (TPR)
across the five iterations when using different thresholds to
determine whether a vector is accepted.
We use the receiver operator characteristic (ROC) curve

for posterior, random, and featureless disorders to identify
suitable values for the threshold, as shown in Fig. 9(a). A
low FPR and high TPR are features of a good classifier.
Posterior disorders and random disorders both perform
much better than featureless disorders and a random
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classifier. Posteriors perform better than random disor-
ders. This is further evidence of the success of our
inference algorithm. A more detailed comparison in
Fig. 9(b) shows that the posterior curve has a much
sharper increase in the true-positive rate. We choose a
threshold value of ns=3 for the experiment as it allows
both posteriors and random disorders to have a moderate
true-positive rate, while maintaining a low false-positive
rate. A low false-positive rate is desirable because exper-
imental 2D current scans required for human labeling are
slow. Other threshold values can be chosen depending on
the desired acceptance rate.
For the real device, as discussed in the main text, we

generate 5000 random unit vectors which are filtered using
posterior and random disorders. The mean number of
accepted unit vectors across two iterations of filtering is

38 using posterior disorders, and 26 using random dis-
orders. Featureless disorder potentials are also used to filter
vectors for testing on the real device. We use the optimized
scale factor from each iteration of the inference algorithm
along with 100 featureless disorders, where the constant
value is determined by the mean of a random disorder
potential. The mean number of accepted unit vectors across
the two iterations is 8.5 using featureless disorders,
indicating that double dots are not often formed in the
model using only the gate potentials. Of the 11 unique
vectors which are accepted by featureless disorders across
both iterations of filtering, two are labeled as producing
quantum dots by human experts. Filtering using featureless
disorders fails to find the top scoring vectors for double
quantum dots, as identified by the posterior samples. One
of the accepted vectors is not tested due to experimental
difficulties.
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