Concepts in Mesoscopic Physics

$$
\text { Drude Conductivity } \quad \sigma=e n \mu=\frac{n e^{2} \tau_{m}}{m^{*}}
$$

rewrite using $\quad k_{F}=\sqrt{2 \pi n}$

$$
\begin{aligned}
& \ell=v_{F} \tau_{m} \\
& v_{F}=\frac{\hbar k_{F}}{m^{*}}
\end{aligned}
$$

$$
\sigma=g_{s} g_{v} \frac{e^{2}}{h} \frac{k_{F} \ell}{2}=\frac{2 e^{2}}{h} \frac{k_{F} \ell}{2}
$$

rewrite using

$$
\begin{aligned}
& \rho_{D O S}=\frac{g_{s} g_{v} m^{*}}{2 \pi \hbar^{2}}=\frac{m^{*}}{\pi \hbar^{2}} \\
& D=\frac{1}{2} v_{F}^{2} \tau_{m}=\frac{1}{2} v_{F} \ell
\end{aligned}
$$

$$
\sigma=e^{2} \rho_{D O S}(E) D
$$

Resistance per Square

2D: resistivity and resistance: same units $\quad R=\rho \frac{L}{W}=\rho \square \frac{L}{W}$
$\rho \square \quad$ resistance per square
example: Hall bar

Classical Hall Effect

Classical Hall Effect

