

A Singlet-Triplet Hole Spin Qubit in Planar Ge

Jirovec, D., Hofmann, A., Ballabio, A. et al. Nat. Mater. 20, 1106–1112 (2021)

Spin Journal Club, 11.07.22, Eric Jutzi

Encoding Schemes

Qubit encoding		f _{Rabi} (MHz)	<i>T</i> ₂ * (μs)	<i>B</i> (T)	Ref.
LD qubit	$ 0\rangle: \downarrow\rangle$ $ 1\rangle: \uparrow\rangle$	85 140 435 >100 147 542	0.06 0.13 0.011 0.833 0.44 0.082	0.144 0.127 0.206 1.65 0.3 0.1	2 4 5 6 15 16
<i>ST</i> ₀ qubit	$ 0\rangle:\frac{1}{\sqrt{2}} (\uparrow\downarrow\rangle - \downarrow\uparrow\rangle)$ $ 1\rangle:\frac{1}{\sqrt{2}} (\uparrow\downarrow\rangle + \downarrow\uparrow\rangle)$	150	1	<0.01	1

Braakman, F., Scarlino, P. Nat. Mater. 20, 1047–1048 (2021)

The heterostructure

The device

- Carrier density of 9.7x10¹¹cm⁻² without accumulation
- Boron dopants excluded from secondary ion mass spectroscopy; attribute to fixed negative charge in the oxide
- CB controls Δg and tunnel coupling t_c
- Pulses applied to LB+RB (affect mostly t_c , not Δg)

Operation region

Energy dispersion and spin funnel

- Pulse sequence of **e**:
 - Start in (2,0)
 - Pulse to (1,1) at varying ε
 - Pulse back to (2,0) after 100 ns

- Red line: $E_Z^T = J(\varepsilon)$
- Doubling due to SOI induced S-T_ oscillations
- S-T_o oscillations at higher ε

Distinction between S-T_o and S-T₋ oscillations

Partial X rotations

- Residual exchange coupling prevents ideal X rotations
- Actual rotation axis is: $\theta = \arctan\left(\frac{\Delta g \mu_{B} B}{J(\varepsilon)}\right)$
- Oscillations occur at frequency

 $f = \frac{1}{h}\sqrt{J^2 + (\Delta g\mu_{\rm B}B)^2}$

Δg tunability

Complete X rotations and Z rotations

 Extract J(ε) from oscillaction frequency and compare to spin funnel measurement

$$J(\varepsilon) = \left| \frac{\varepsilon}{2} - \sqrt{\frac{\varepsilon^2}{4} + 2t_{\rm C}^2} \right|$$

- Lines coincide for $\Sigma g=11.0 \rightarrow g_L = 4.5$, $g_R = 6.5$
- Tunnel coupling t_C extracted as free fit parameter

Complete X rotations and noise

$$rac{1}{T_2^*} = rac{\pi\sqrt{2}}{h} \sqrt{\left(rac{J(arepsilon)}{E_{ ext{tot}}}rac{\mathrm{d}J}{\mathrm{d}arepsilon}\deltaarepsilon_{ ext{rms}}
ight)^2 + \left(rac{\Delta E_Z}{E_{ ext{tot}}}\delta\Delta E_{ ext{Zrms}}
ight)^2}$$

• Increase in Δg does not reduce T_2^* : increase in t_C of 2 GHz -> increase of J larger than ΔE_Z and $\Delta E_Z/E_{tot}$ is reduced

Refocusing pulses

- Choose $\tau_s = (2n+1/2)^* t_{\pi,x}$ to keep the system in the same state if no decoherence has occurred
- Calibration of refocusing pulse tricky, because J and Δg are never completely off
- Refocusing pulse needs to be applied in

Calibration of refocusing pulse

Summary:

- Demonstration of two-axis control
- Dephasing time of 1 μ s at B=0.5 mT
- Electrically driven Δg rotations of 150 MHz at 5 mT
- Mostly low-frequency 1/f noise

Outlook:

- Move to latched or shelved readout:
 - improve visibility
 - operate at higher magnetic fields → potentially surpass fastest Rabi frequencies