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Abstract

Spin-orbit effects, inherent to electrons confined in quantum dots at a silicon heterointerface,
provide a means to control electron spin qubits without the added complexity of on-chip,
nanofabricated micromagnets or nearby coplanar striplines. Here, we demonstrate a
singlet-triplet qubit operating mode that can drive qubit evolution at frequencies in excess of
200 MHz. This approach offers a means to electrically turn on and off fast control, while
providing high logic gate orthogonality and long qubit dephasing times. We utilize this
operational mode for dynamical decoupling experiments to probe the charge noise power
spectrum in a silicon metal-oxide-semiconductor double qguantum dot. In addition, we assess
qubit frequency drift over longer timescales to capture low-frequency noise. We present the
charge noise power spectral density up to 3 MHz, which exhibits a 1/f* dependence con-
sistent with a~ 0.7, over 9 orders of magnitude in noise frequency.
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Device

« Fully foundry
compatible

« MOS device with
285

« Poly-Si single layer
gates

Poly-Si

« Singlet-triplet qubit
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Device operation

- Loadingin (4,0) state

- Adiabatic passage to
(3,1)

« SOC-driven rotations

« Readout back to (4,0)
by PSB and enhanced
latching mechanism
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Singlet-triplet qubit

« The peak comes from
the crossing of the
excited state ll* with the
spin-valley hot-spot
span{1,{T}.

« This hot-spot is tunable
by the QD-QD detuning
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Intervalley hotspot

The hotspot corresponds to a distortion of the subspace
span{1l,1l},where {I' and l{* are hybridized. The interaction can

be represented by:

) = w_|[41) +w [JLWD)
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So 3 peaks in frequency (corresponding to the 3 eigenvalues)
are expected here



Why only one peak?

b i FFT Intensity (arb. units)
Suppose: é 6
1) we start with the singlet state. 3 s
2) Ifvalley splitting is changed to the hot-spot: g ; :
=> the |1 deforms either to + or - et 0

=> on the left side of the peak the measured frequencies are
dominated by rotation within the subspace {(T{, +), (T{, -)}

=> We have a two qubit system

=> one frequency component
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Singlet-triplet qubit with
Intervalley coupling

« Shallow detuning: no
rotation

- Moderate detuning: slow
rotations

- High detuning: fast
rotations
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Singlet-triplet qubit with
Intervalley coupling

Control of rotation frequency
by QD-QD detuning over 2
orders of magnitude f

Dephasing time decreases
since better coupling to
charge noise T, « |df/
av|—t

Quality of rotation peaks
above 100 MHz
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Singlet-triplet qubit with intervalley coupling
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Decoupling from charge noise

« CPMG protocol at
different detuning
points

« Dephasing time is
dependent on
detuning point (faster
exchange pulses leads
to faster detuning)
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Charge noise measurements

Charge noise
(fluctuations in exchange
rotation frequency)
obtained by treating the
CMPG sequence as a
noise filter.

S s N
Un) =y qome  fx, = omic:
2N TZ,,N,T
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Charge noise measurements

b Singlet Return (arb. units) c ;:.3
T ]
2007 =
2 >
150 g
5 :
:}.’_ 100 g :
(W
o
50 5
' e
| - 7 A )
0 0.1 0.2 03 04 2 o 200 400 600

Wait time (us) Meaurement time (s)

Additional charge noise measurement (low frequency): shift
of S return probability by exchange rotation
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Charge noise measurements
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Combining the two dataset, gives PSD with a 1/f2 spectrum
(a ~0.7) between 3mHz and 3 MHz.
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Conclusions

Main results

 First spin qubit driven by spin-valley
coupling

Can switch between 3 control regimes:
1) large exchange interactions
2) intervalley coupled qubit

3) g-factor difference (intravalley
coupling), sensitive to hyperfine
interaction and decoupled from
charge noise

- Investigation of charge noise for MOS qubit
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Open issues

Fast dephasing time

No full control on valley
uniformity yet
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Operation of the device

The system is initialized by first unloading
an electron from the DQD (point U).

An energy-selective pulse is applied to load
a (4,0)S ground state (point L).

The system is then plunged (point P) near
the charge anti-crossing.

The electrons are then separated (point C)
and qubit manipulation pulse sequences
are performed in the (3,1) charge region.
The system is then pulsed back to point P
where, due to Pauli spin blockade, a singlet
spin state is allowed to transfer to the

(4,0) charge state but a triplet spin state is
energetically blocked and remains in a
(3,1) charge state.

An enhanced latching mechanism is then
utilized for a spin-to-charge conversion
(point M).
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