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Nuclear spins were among the !rst physical platforms to be considered for quantum 
information processing1,2, because of their exceptional quantum coherence3 and 
atomic-scale footprint. However, their full potential for quantum computing has not 
yet been realized, owing to the lack of methods with which to link nuclear qubits 
within a scalable device combined with multi-qubit operations with su"cient !delity 
to sustain fault-tolerant quantum computation. Here we demonstrate universal 
quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon 
nanoelectronic device. A nuclear two-qubit controlled-Z gate is obtained by imparting 
a geometric phase to a shared electron spin4, and used to prepare entangled Bell 
states with !delities up to 94.2(2.7)%. The quantum operations are precisely 
characterized using gate set tomography (GST)5, yielding one-qubit average gate 
!delities up to 99.95(2)%, two-qubit average gate !delity of 99.37(11)% and two-qubit 
preparation/measurement !delities of 98.95(4)%. These three metrics indicate that 
nuclear spins in silicon are approaching the performance demanded in fault-tolerant 
quantum processors6. We then demonstrate entanglement between the two nuclei 
and the shared electron by producing a Greenberger–Horne–Zeilinger three-qubit 
state with 92.5(1.0)% !delity. Because electron spin qubits in semiconductors can be 
further coupled to other electrons7–9 or physically shuttled across di#erent 
locations10,11, these results establish a viable route for scalable quantum information 
processing using donor nuclear and electron spins.

Nuclear spins are the most coherent quantum systems in the solid 
state3,12, owing to their extremely weak coupling to the environ-
ment. In the context of quantum information processing, the long  
coherence is associated with record single-qubit gate fidelities13. How-
ever, the weak coupling poses a challenge for multi-qubit logic opera-
tions. Using spin-carrying defects in diamond14 and silicon carbide15, 
this problem can be addressed by coupling multiple nuclei to a common 
electron spin, thus creating quantum registers that can sustain small 
quantum logic operations and error correction16. Exciting progress 
is being made on linking several such defects via optical photons17,18.

Still missing, however, is a pathway to exploit the atomic-scale dimen-
sion of nuclear spin qubits to engineer scalable quantum processors, 
where densely packed qubits are integrated and operated within a 
semiconductor chip19. This requires entangling the nuclear qubits with 
electrons that can either be physically moved or entangled with other 
nearby electrons. It also requires interspersing the electron–nuclear 

quantum processing units with spin readout devices20. Here we show 
experimentally that silicon—the material underpinning the whole of 
modern digital information technology—is the natural system in which 
to develop dense nuclear spin-based quantum processors1.

One-electron–two-nuclei quantum processor
The experiments are conducted on a system of two 31P donor atoms, 
introduced in an isotopically purified 28Si substrate by ion implantation 
(see Methods). A three-qubit processor is formed by using an electron 
(e) with spin S = 1/2 (basis states |↑", |↓") and two nuclei (Q1, Q2) with 
spin I = 1/2 (basis states | !, | !). Metallic structures on the surface of 
the chip provide electrostatic control of the donors, create a 
single-electron transistor (SET) charge sensor, and deliver microwave 
and radio-frequency signals through a broadband antenna (Fig. 1a and 
Extended Data Fig. 1). With this set-up, we can perform single-shot 
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In a 🥜-shell
• Nuclear spins (Ns): 

‣ Long coherence / weak coupling to environment


• Electron spins (Es): 

‣ Shorter coherence / stronger coupling to environment


• Combine the best of both: 

‣ Bridge the gap between Ns through shared Es


‣ Entangle electron as an ancilla for readout & operations

🥳 😴😳

🤠
💨
💨💨
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Outline
• One electron - two nuclei quantum processor 
‣ Device

‣ Methods for readout & control of single qubit 
‣ Control & characterisation of both qubits


• Nuclear two-qubit operations 
‣ Circuit diagrams

‣ Bell-states


• Gate set tomography 

• Three-qubit entanglement 

• Outlook
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Device
• Standard MOS compatible processes: 

‣ p-type Si <100>, 10-20 Ω cm


‣ 900 nm epilayer of isotopically enriched 28Si


‣ 730 ppm residual 29Si


‣ doped n+ / p for ohmics / leak prevention


‣ 200 nm SiO2 with a 20 x 40 μm etch-window (HF) with 8 
nm SiO2 

‣ 90 x 100 nm area for P+ ion implantation (10keV)


‣ donor activation RTA 5’’ @ 1000˚ C


‣ Al metal gates insulated by native Al2O3 

‣ Anneal 15’ @400˚ C to passivate interface traps


‣ Static B0 = 1.33 T

Article

SET gate

barrie
r gate

rate gate

barrier gate

SET top gate

DC donor gate

DC donor gate

fast donor gate

fast donor gate

MW antenna

200 nm

Extended Data Fig. 1 | Device layout. Scanning electron micrograph of a 
device identical to the one used in this experiment. 31P donor atoms are 
implanted in the region marked by the orange rectangle, using a fluence of 
1.4 × 1012 cm−2 which results in a most probable inter-donor spacing of 
approximately 8 nm. Four metallic gates are fabricated around the 
implantation region, and used to modify the electrochemical potential of the 
donors. A nearby SET, formed using the SET top gate and barrier gates, enables 
charge sensing of a single donor atom, as well as its electron spin through 
spin-to-charge conversion (Methods). The tunnel coupling between the donors 
and SET is tuned by the rate gate situated between the SET and donor implant 
region. A nearby microwave (MW) antenna is used for ESR and NMR of the 
donor electron and nuclear spins, respectively.

Ext. Dat. Fig. 1
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Single Shot e- - Spin Readout
• Elzerman Protocol [2]  

‣ QD coupled to QPC


‣ kBT < ΔEZ < ΕORB


• Detector electrostatically & tunnel coupled to electron 
site 

‣ Use a SET coupled to source & drain


‣ B > 1 T ,     Te ~ 200 mK 

[1] A. Morello, Nature 467, 687-691 (2010)

( [2] J.M. Elzermann, Nature 430, 431-435 (2004) )

Considering the results of the spin lifetime measurements discussed
below, it is likely that we are observing transitions between D1 and D0

states of implanted P donors21.
The charge transition at Vpl<21.4V in Fig. 1d has a large

Dq< 0.7e, where 1e is equivalent to the spacing between adjacent
current peaks. This indicates a donor very close to the SET island11.
Accordingly, we find a fast electron tunnelling time between the donor
and the SET, of the order of 10ms. For comparison, the charge transi-
tion at Vpl<21.1V has a lower Dq< 0.3e and a much slower tunnel
time, ,10ms, consistent with a donor further away. We chose the
donor transition at Vpl<21.4V to implement the spin readout pro-
tocol. Figure 2b–g illustrates the method we used to find the values of
Vpulse during the read phase at which spin-dependent tunnelling is
achieved. By lowering the read level from too high (Fig. 2c) to too

low (Fig. 2g), the time traces of ISET during the read phase show a
transition from ISET5 Imax, through random telegraph signal, to
ISET5 0, passing through a region where ISET can be either zero
(Fig. 2e) or show a spin-up signal (Fig. 2f). In this region, the condition
m#,mSET,m" is fulfilled, and a single-shot projective measurement
of the electron spin state is performed. When plotting the average of
several single-shot traces taken at different read levels, the correct
readout range is highlighted by the appearance of a high current region
at the beginning of the read phase, spanning a time interval of the order
of the electron tunnel time 1/C (Fig. 4). Such a high-current region is
absent inmeasurements performed in zeromagnetic field, as expected.
With a modified pulse sequence, it is also possible to extract the
Zeeman energy splitting, EZ5 gmBB, and demonstrate the deter-
ministic loading of a j#æ electron (Supplementary information).
Because the loading of a state j#æ is controlled by gate voltages and
occurs on ,10-ms timescales as determined by the electron tunnel
time, this device already realizes two essential requirements for
quantum computation and quantum error correction, namely, single-
shot readout and fast preparation of the qubit ground state22.
Defining P" as the probability of observing a spin-up electron, we

find that P" decreases when increasing the wait time tw before the spin
is read out (Fig. 3a), because the excited state j"æ relaxes to the ground
state j#æ. The wait time dependence of P" (Fig. 3b, c) is well described
by a single exponential decay, P"(tw)5P"(0)exp(2tw/T1), where T1 is
the lifetime of the spin excited state.
The measured spin relaxation rates as a function of magnetic field,

T1
21(B), at phonon temperatureT< 40mK, are plotted in Fig. 3d. The

data on device A for B$ 2T are well described by the func-
tion T1

21(B)<K0A1K5AB
5, with K0A5 1.846 0.07 s21 and K5A5

0.007660.0002 s21 T25. A fit of the formT1
21(B)5K01KaB

a, where
K0, Ka and a are free parameters, yields a5 4.86 0.2. The data on
device B follow T1

21(B)<K5BB
5, with K5B5 0.0156 0.0005 s21 T25

down to B5 1.5T, where the spin lifetime has a value T15 66 2 s.We
attribute the B-independent contribution observed in device A to the
effect of dipolar coupling between the spin under measurement and
those ofneighbouringdonors (Supplementary Information). This effect
depends on the details of the mutual distance between implanted
donors, and is therefore strongly sample-dependent. The T1

21 / B5

dependence agreeswith the low-T limit23 (kBT= gmBB) of a spin–lattice
relaxation mechanism arising from valley repopulation24, that is,
the change in the relative weight of the six conduction band minima
(valleys) of Si caused by the deformation of the crystal lattice when the
state j"æ relaxes to j#æ, emitting an acoustic phonon. This is the domi-
nant relaxation channel for donors, where orbital excited states are very
high in energy. Conversely, for spins in electrostatically defined
quantum dots23 in silicon, relaxation through low-lying orbital states
can lead to T1

21 / B7. This dependence has been recently observed in
Si/SiGe (ref. 25) and Si/SiO2 (ref. 26) quantum dots.
Our results are also incompatible with the known relaxation process

for interface traps, which is dominated by the coupling to two-level
fluctuators27, yielding T1

21 / B3. A recent electron spin resonance
experiment on shallow traps at the Si/SiO2 interface28 found
T1< 800ms at T5 350mK and B5 0.32T, that is, 2 to 3 orders of
magnitude shorter than our result, despite the much lower magnetic
field. An experiment on bulk-doped Si:P by conventional electron spin
resonance techniques (J. J. L. Morton, personal communication)
yielded T15 0.42 s at B5 3.35 T and T, 5K, that is, in the T-inde-
pendent regime. This data point is only a factor of,1.3 below the line
T1

21(B)<K5AB
5.We conclude that the observation ofT1

21 / B5 and
the quantitative agreement with bulk Si:P data constitute a strong
indication that we have measured the spin of a single electron bound
to an implanted P donor. The proximity of the donor to electrostatic
gates and a Si/SiO2 interface29 could be responsible for the slight vari-
ability of T1 (Supplementary Information) but, importantly, does not
substantially compromise the long spin lifetime of the donor-bound
electron.
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Figure 1 | Spin readout device configuration and charge transitions.
a, Diagram showing the spin-dependent tunnelling configuration, where a
single electron can tunnel onto the island of a SET only when in a spin-up state.
b, Pulsing sequence for single-shot spin readout (see main text), and SET
response, ISET. The dashed peak in ISET is the expected signal from a spin-up
electron. The diagrams at the top depict the electrochemical potentials of the
electron site (m#,"), of the SET island (mSET) and of the drain contact (mD).
c, Scanning electron micrograph of a device similar to the one measured. The
area where the P donors are implanted is marked by the dashed square. Both
d.c. voltages and pulses are applied to the gates as indicated. The red shaded
area represents the electron layer induced by the top gate and confined beneath
the SiO2 gate oxide layer.d, SET current ISET as a function of the voltages on the
top and the plunger gates, Vtop and Vpl, at B5 0. The lines of SET Coulomb
peaks are broken by charge transfer events. The blue arrow on the transition at
Vpl<21.4V shows the axis along which Vtop and Vpl are pulsed for
compensated time-resolved measurements, ensuring that mSET remains
constant during the pulsing. e, Line traces of ISET along the solid and dashed
lines in d. Ionizing the donor shifts the sequence of SET current peaks by an
amount DVtop5Dq/Ctop, causing a change DI in the current. The charging
energy of the SET is,1.5meV.
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n- - Spin Readout
• Setup of 2-qubit system e & n 
‣ ESR strip line + static B0-field


‣ 31P donor island with bound S = 1/2 electron (D0)


‣ γn ~ 17 MHz/T,  γe ~ 28 GHz/T, A ~ 117 MHz 

• For γeB0 >> A > 2γnB0 : 

‣  

‣ ionizing system to D+ state —> 


• ESR & NMR Resonances: 

‣     (+/- for n up/down)


‣     (+/- for e up/down)

| ↓ ⇑ ⟩, | ↓ ⇓ ⟩, | ↑ ⇓ ⟩, | ↑ ⇑ ⟩
| ⇑ ⟩, | ⇓ ⟩

νe1,2 ≈ γeB0 ± A/2
νn1,2 ≈ γnB0 ± A/2

[3] J.J. Pla, Nature 496, 334-338 (2013)

[3]

depending on the state of the nuclear spin: ne1< ceB0 –A/2 for nuclear
spin jYæ and ne2< ceB01A/2 for nuclear spin jXæ. In a single-atom
experiment, if we assume that the ESRmeasurement duration is much
shorter than the nuclear spin flip time, then we expect only one active
ESR frequency at any instant. Detecting ESR at the frequency ne1
therefore indicates that the nuclear spin is in state jYæ, whereas detec-
tion at ne2 implies the nuclear spin is jXæ.
Having identified the two resonance frequencies through an ESR

experiment (see Fig. 1d and also ref. 10), we performed repeated mea-
surements of the nuclear spin state (Fig. 2a) by toggling the microwave
frequency nESR between ne1 and ne2, obtaining the electron-spin-up
fraction f" at each point (see Supplementary Information). If the quan-
tity Df"5 f"(ne2)2 f"(ne1) is positive, we assign the nuclear state jXæ,
and vice versa. A histogram of Df" (Fig. 2d) shows two well-separated
Gaussian peaks, corresponding to the two possible nuclear orienta-
tions, with widths determined by the signal-to-noise ratio (SNR) of the
measurements (Supplementary Information). The nuclear spin read-
out error (Fig. 2e) is obtained by fitting the two peaks and integrating
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Figure 2 | Nuclear spin quantum jumps, readout error and lifetimes.
a, Repetitive single-shot measurements of the nuclear spin state performed by
toggling nESR between ne15 49.5305GHz (dark blue) and ne25 49.6445GHz
(light blue) and recording the electron-spin-up fraction f". Each data point
represents the average f" over 250 single-shot measurements of the electron
spin (acquired in 260ms). The electron-tunnelling time is of the order of 100ms,
as reported in ref. 10. The dashed red lines indicate instants when a nuclear spin
quantum jump has occurred. b, Electron-spin-up fraction difference,
Df"5 f"(ne2)2 f"(ne1), for the data in a. Df". 0 indicates nuclear spin |Xæ, and
vice versa. c, Df" in an experiment with an increased rate of donor ionization/
neutralization, Cion/neut. The greater Cion/neut is achieved by including an
additional phase in the nuclear spin readout measurement, where resonant
tunnelling of |#æ electrons between the donor and SET occurs (see
Supplementary Information). d, Histograms of Df" for the data in b, showing
two well-separated Gaussian peaks, each corresponding to a nuclear spin state,
as indicated. The counts obtained for20.015,Df", 0.05 are attributed to
nuclear spin quantum jumps occurring during themeasurement. The light and
dark blue solid lines are Gaussian fits to the data (see discussion in main text).
e, Readout errors as a function of the detection threshold forDf". The solid dark
(light) blue line indicates the SNR-limited error for detecting the |Yæ ( |Xæ) state,
whereas the black dashed line indicates the total error. f, Nuclear spin flip rates
CX/Y as a function of the donor ionization/neutralization rateCion/neut. The light
blue line is a fit toCX5C01 pCion/neut, with p5 1.91(8)3 1026. The dark blue
line is a constant CY5 1.54(17)3 1022 s–1. The red and blue shaded regions
indicate the values obtained from the data sets inb and c, respectively. The error
bars represent a 95% confidence level (see Supplementary Information).
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Figure 1 | Qubit nanostructure, spin transitions and electron spin
resonance spectra. a, Scanning electron micrograph of the active area of the
qubit device, showing an implanted donor (donor as red arrow), the single-
electron transistor (SET) and the short-circuit termination of the microwave
line. The device is mounted in a dilution refrigerator with an electron
temperature of,300mK, and is subjected to static magnetic fields B0 between
1.0T and 1.8T. B0 is oriented perpendicular to the short-circuit termination of
the microwave line (solid orange single-ended arrow), which carries a current
(solid double-ended arrow) and produces an oscillating magnetic field B1
(represented by the solid and dashed circles) perpendicular to the surface of the
device. TG, top gate; PL, plunger gate; LB, left barrier; RB, right barrier.
b, Energy-level diagram of the neutral 31P donor system, with corresponding
transitions for electron spin resonance (ESR) in blue, and for nuclear magnetic
resonance (NMR) in red. #": electron spin states; YX: nuclear spin states.
c, Energy-level diagram of the ionized 31P donor, with the single NMR
transition shown in purple. d, ESR spectra obtained at B05 1.77 T by scanning
the microwave frequency andmonitoring the electron-spin-up fraction f". The
top trace corresponds to an active ne1 ESR transition (nuclear spin state |Yæ) and
the bottom trace to an active ne2 ESR transition (nuclear spin state |Xæ).
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depending on the state of the nuclear spin: ne1< ceB0 –A/2 for nuclear
spin jYæ and ne2< ceB01A/2 for nuclear spin jXæ. In a single-atom
experiment, if we assume that the ESRmeasurement duration is much
shorter than the nuclear spin flip time, then we expect only one active
ESR frequency at any instant. Detecting ESR at the frequency ne1
therefore indicates that the nuclear spin is in state jYæ, whereas detec-
tion at ne2 implies the nuclear spin is jXæ.
Having identified the two resonance frequencies through an ESR

experiment (see Fig. 1d and also ref. 10), we performed repeated mea-
surements of the nuclear spin state (Fig. 2a) by toggling the microwave
frequency nESR between ne1 and ne2, obtaining the electron-spin-up
fraction f" at each point (see Supplementary Information). If the quan-
tity Df"5 f"(ne2)2 f"(ne1) is positive, we assign the nuclear state jXæ,
and vice versa. A histogram of Df" (Fig. 2d) shows two well-separated
Gaussian peaks, corresponding to the two possible nuclear orienta-
tions, with widths determined by the signal-to-noise ratio (SNR) of the
measurements (Supplementary Information). The nuclear spin read-
out error (Fig. 2e) is obtained by fitting the two peaks and integrating
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Figure 2 | Nuclear spin quantum jumps, readout error and lifetimes.
a, Repetitive single-shot measurements of the nuclear spin state performed by
toggling nESR between ne15 49.5305GHz (dark blue) and ne25 49.6445GHz
(light blue) and recording the electron-spin-up fraction f". Each data point
represents the average f" over 250 single-shot measurements of the electron
spin (acquired in 260ms). The electron-tunnelling time is of the order of 100ms,
as reported in ref. 10. The dashed red lines indicate instants when a nuclear spin
quantum jump has occurred. b, Electron-spin-up fraction difference,
Df"5 f"(ne2)2 f"(ne1), for the data in a. Df". 0 indicates nuclear spin |Xæ, and
vice versa. c, Df" in an experiment with an increased rate of donor ionization/
neutralization, Cion/neut. The greater Cion/neut is achieved by including an
additional phase in the nuclear spin readout measurement, where resonant
tunnelling of |#æ electrons between the donor and SET occurs (see
Supplementary Information). d, Histograms of Df" for the data in b, showing
two well-separated Gaussian peaks, each corresponding to a nuclear spin state,
as indicated. The counts obtained for20.015,Df", 0.05 are attributed to
nuclear spin quantum jumps occurring during themeasurement. The light and
dark blue solid lines are Gaussian fits to the data (see discussion in main text).
e, Readout errors as a function of the detection threshold forDf". The solid dark
(light) blue line indicates the SNR-limited error for detecting the |Yæ ( |Xæ) state,
whereas the black dashed line indicates the total error. f, Nuclear spin flip rates
CX/Y as a function of the donor ionization/neutralization rateCion/neut. The light
blue line is a fit toCX5C01 pCion/neut, with p5 1.91(8)3 1026. The dark blue
line is a constant CY5 1.54(17)3 1022 s–1. The red and blue shaded regions
indicate the values obtained from the data sets inb and c, respectively. The error
bars represent a 95% confidence level (see Supplementary Information).

!⇓〉

!⇑〉

!⇑〉

!↓⇑〉

!↑⇑〉

!↓⇓〉

!⇓〉

!↑⇓〉
c b 

Qn2

Qe1

Qe1 Qe2

Qe2
Qn1

Qn0

TG 

B0

B1
a 

100 nm 

d 

El
ec

tr
on

 s
pi

n-
up

 fr
ac

tio
n,

 f ↑
 

ESR frequency, QESR (GHz) 

A ≈ 114 MHz

49.50 49.55 49.60 49.65
0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

31P

e–

PL LB RB 

D0 D+

iESR
, iNMR

Figure 1 | Qubit nanostructure, spin transitions and electron spin
resonance spectra. a, Scanning electron micrograph of the active area of the
qubit device, showing an implanted donor (donor as red arrow), the single-
electron transistor (SET) and the short-circuit termination of the microwave
line. The device is mounted in a dilution refrigerator with an electron
temperature of,300mK, and is subjected to static magnetic fields B0 between
1.0T and 1.8T. B0 is oriented perpendicular to the short-circuit termination of
the microwave line (solid orange single-ended arrow), which carries a current
(solid double-ended arrow) and produces an oscillating magnetic field B1
(represented by the solid and dashed circles) perpendicular to the surface of the
device. TG, top gate; PL, plunger gate; LB, left barrier; RB, right barrier.
b, Energy-level diagram of the neutral 31P donor system, with corresponding
transitions for electron spin resonance (ESR) in blue, and for nuclear magnetic
resonance (NMR) in red. #": electron spin states; YX: nuclear spin states.
c, Energy-level diagram of the ionized 31P donor, with the single NMR
transition shown in purple. d, ESR spectra obtained at B05 1.77 T by scanning
the microwave frequency andmonitoring the electron-spin-up fraction f". The
top trace corresponds to an active ne1 ESR transition (nuclear spin state |Yæ) and
the bottom trace to an active ne2 ESR transition (nuclear spin state |Xæ).
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1e- 2n Quantum Processor
• 2 31P donor atom nuclei I = 1/2 + 1 electron S 1/2 

‣ 


‣ A1 = 95 MHz, A2 = 9 MHz


‣ hyperfine coupled e likely the third one 

(spin relax. time too short to be the firs one)


• Effective mass calculation 

‣ A1,2 reproducible (calc.) assuming 6.5 nm donor-spacing


‣ wide spacing -> less anisotropic hyperfine coupling 


‣ —> less chance of n-spin radomisation during readout

(P~10-6 —> QND)

H = − γeB0
̂Sz − γeB0 ( ̂I1,z + ̂I2,z) + A1 S ⋅ I1 + A2 S ⋅ I2

Nature | Vol 601 | 20 January 2022 | 349

electron spin readout20, and high fidelity (approximately 99.9%) 
single-shot quantum nondemolition readout of the nuclear spins21, as 
well as nuclear magnetic resonance (NMR) and electron spin resonance 
(ESR)22 on all spins involved (see Methods).

The ESR spectra in Fig. 1c exhibit four resonances. This means that 
the ESR frequency depends upon the state of two nuclei, to which the 
electron is coupled by contact hyperfine interactions A1 ≈ 95 MHz 
and A2 ≈ 9 MHz, with a dependence on the gate potentials caused by 
the Stark shift (Extended Data Fig. 2). We adopt labels where, for 
instance, νe|  represents the frequency at which the electron spin 
undergoes transitions conditional on the two nuclear spin qubits 
being in the |Q Q $ = | $1 2  state, and so on. The values of A1, A2 can be 
independently checked by measuring the frequencies νQ1|↓, νQ2|↓ at 
which each nucleus responds while the electron is in the |↓$ state 
(Supplementary Information section 1).The hyperfine-coupled elec-
tron could either be the first or the third electron bound to the donor 
cluster. Since its spin relaxation time T1e is three orders of magnitude 
shorter than expected from a one-electron system (Extended Data 
Fig. 3), we interpret the ESR spectrum in Fig. 1c as describing the 
response of the third electron bound to a 2P donor system.

An effective-mass calculation of the wavefunction of the third elec-
tron in a 2P system (see Methods) reproduces the observed values 
of A1 and A2 by assuming donors spaced 6.5 nm apart, and subjected 
to an electric field 2 mV nm−1 that pulls the electron wavefunction 
more strongly towards donor 1 (Fig. 1b). The 31P nuclei in this 2P 
cluster are spaced more widely than those produced by scanning 
probe lithography8,23, where the sub-nanometre inter-donor spacing 
causes a strongly anisotropic hyperfine coupling, which randomizes 
the nuclear spin state each time the electron is removed from the 
cluster for spin readout24. Here, instead, the probability of flipping 
a nuclear spin by electron ionization is of order 10−6 (Extended Data 
Fig. 5), meaning that our nuclear readout is almost perfectly quantum 
nondemolition.

Nuclear two-qubit operations
We first consider the two 31P nuclear spins as the qubits of interest. 
One-qubit logic operations are trivially achieved by NMR pulses21 
(Methods and Extended Data Fig. 4), where A1 ≠ A2 provides the spectral 
selectivity to address each qubit individually (Fig. 1c). Two-qubit opera-
tions are less trivial, since the nuclei are not directly coupled to each 
other (Supplementary Information sections 1, 9). They are, however, 
hyperfine-coupled to the same electron. This allows the implementa-
tion of a geometric two-qubit controlled-Z (CZ) gate4,16.

When a quantum two-level system is made to trace a closed trajectory 
on its Bloch sphere, its quantum state acquires a geometric phase  
equal to half the solid angle enclosed by the trajectory25. Figure 1d illus-
trates how an electron 2π pulse at the frequency νe|  (see Fig. 1d)  
constitutes a nuclear CZ two-qubit gate. Starting from the state 
| $ ⊗ (| $ + | $)/ 2 ≡ (| $ + | $)/ 2 , the electron X2π pulse at νe|  
introduces a phase factor eiπ = −1 to the | $ branch of the superposi-
tion, resulting in the state ( − | $ + | $)/ 2 ≡ | $ ⊗ ( − | $ + | $)/ 2 , 
that is, a rotation of Q2 by 180 degrees around the z axis of its Bloch 
sphere, which is the output of a CZ operation. Conversely, if the initial 
state of Q1 were | $, the pulse at νe|  would have no effect on the elec-
tron, leaving the nuclear qubits unaffected.

A nuclear controlled-NOT (CNOT) gate is obtained by sandwiching 
the CZ gate between a nuclear −π/2 and π/2 pulse (Extended Data 
Fig. 6a). Applying an ESR X2π pulse at νe|  transforms the sequence into 
a zero-CNOT gate, that is, a gate that flips Q2 when Q1 is in the |0$ ≡ | $ 
state (Extended Data Fig. 6b and Supplementary Information section 2).

We apply this universal gate set (Fig. 2a) to produce each of the  
four maximally entangled Bell states of the two nuclear spins, 
Φ| $ = (| $ ± | $)/ 2±  and Ψ| $ = (| $ ± | $)/ 2± . We reconstruct the 
full density matrices of the Bell states using maximum likelihood quan-
tum state tomography26 (Supplementary Information section 3).  
The reconstructed states (Fig. 2f) have fidelities of up to 94.2(2.7)%, 
and concurrences as high as 0.93(4), proving the creation of genuine 
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Fig. 1 | Operation of a one-electron–two-nuclei quantum processor.  
a, Artist’s impression of a pair of 31P nuclei (red), asymmetrically coupled to the 
same electron (blue). The spins are controlled by oscillating magnetic fields 
(yellow) generated on-chip. b, Effective-mass calculation of the wavefunction 
ψ( y, z) of the third electron on the 2P cluster. The observed values of hyperfine 
coupling are well reproduced by assuming a 6.5-nm spacing between the 
donors. c, Experimental NMR spectrum of the 31P nuclei (top) and ESR spectrum 
of the shared electron (bottom) at B0 = 1.33 T, along with energy level diagram 

(right) of the eight-dimensional Hilbert space (spacings not to scale).  
The spectra yield the hyperfine couplings A1 ≈ 95 MHz and A2 ≈ 9 MHz  
between the electron and the nuclear qubits Q1 and Q2. d, Implementation  
of a geometric two-qubit CZ gate. A conditional π phase shift is acquired when a 
2π rotation is applied on the electron spin at frequency νe| , that is, conditional 
on the nuclear spins being | !. This operation corresponds to the CZ gate on 
the nuclei when restricted to the electron |↓" subspace, as indicated by the 
equivalence symbol (≅) between the two circuits.
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1e- 2n Quantum Processor
• NMR of nuclei /wo no 3rd electron (2 in S = 0) 

‣ A1 = A2 = 0


‣ identical resonance frequencies


• NMR of nuclei /w all electrons present 

‣ spectator qubit either in 


‣ no significant coupling between nuclei

| ⇑ ⟩, | ⇓ ⟩

2

S1. ABSENCE OF DIRECT INTERACTION BETWEEN THE NUCLEAR SPIN QUBITS

In this section we provide experimental evidence for the absence of a direct interaction between the nuclear spin
qubits Q1 and Q2. First, we remove the outermost electron from the 2P cluster and measure the resonance frequencies
of Q1 and Q2. We apply RF pulses at very low power (-21 dBm at the source) to minimise power broadening of the
NMR resonances. Supplementary Figure S1a shows that the two qubits have identical resonance frequencies, which are
consistent with our estimate of the external magnetic field induced by the permanent magnet board (‹31P+ = “nB0,
“n = 17.23 MHz/T, B0 ¥ 1.328 T). These results are consistent with the remaining two electrons being in a perfect
S = 0 singlet state, whereby A1 = A2 = 0. They are also consistent with having removed all electrons from the
2P cluster, but we consider this interpretation less likely, based on the anomalously low value of the electron spin
relaxation time T1e (see Extended Data Fig. 2). We can also deduce that the direct dipole-dipole interaction between
the two nuclear spins is negligible in comparison to the broadening (≥ 1 kHz) of the NMR resonance peaks.

Next, we investigate the NMR spectrum of both Q1 and Q2 with all electrons present on 2P cluster. We measure
the frequency response of a target qubit (Q1 - Supplementary Figure S1b; Q2 - Supplementary Figure S1c) with the
spectator qubit (Q2 - Supplementary Figure S1b; Q1 - Supplementary Figure S1c) prepared in either |»Í or |«Í state.
We observe no detectable resonance frequency shift due to a coupling between the nuclei, which in this case might be
mediated by the shared electron.

These experiments corroborate the analysis in Section S11 A, wherein it is shown that no plausible value of
inter-nuclear interaction can explain the presence of the weight-2 entangling errors unveiled by GST.
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Figure S1. a, NMR spectrum of Q1 and Q2 with the third electron removed. The data was acquired at -21 dBm NMR power
to minimise spectral broadening. The two remaining electrons are left in the magnetically inactive, S = 0 singlet state. The
resonance frequencies of the two qubits are equal and consistent with the prediction for the ionized 31P in the estimated magnetic
field produced by the permanent magnet board (B0 ¥ 1.328 T). b, NMR spectrum of Q1 (c, Q2) with all three electrons present
on the 2P cluster. Q2 (c, Q1) was prepared in either |»Í or |«Í. In both cases the Q1 (c, Q2) resonant frequency remains the
same, indicating the absence of significant coupling between the two nuclei.
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1e- 2n Quantum Processor
• 4 ESR resonances 

‣ Dependence on gate potentials 
(Stark shift)


‣  



‣ 


‣ 


‣ pink star, readout

Δνe|⇑⇑ = 0.3 MHzV−1, Δνe|⇑⇓ = 5.2 MHzV−1,
Δνe|⇓⇑ = 7.6 MHzV−1, Δνe|⇓⇓ = 2.4 MHzV−1

A1 = (νe|⇑⇓ + νe|⇑⇑)/2 − (νe|⇓⇓ + νe|⇑⇓)/2

A2 = νe|⇑⇑ − νe|⇑⇓

Ext. Dat. Fig. 2
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Extended Data Fig. 2 | Electrical tunability of the hyperfine interaction and 
the electron gyromagnetic ratio. a, Map of the SET current as a function of 
SET gate and fast donor gates (pulsed jointly). The white dashed line indicates 
the location in gate space where the 2P donor cluster changes its charge state. 
The third, hyperfine-coupled electron is present on the cluster in the region to 
the right of the line. Electron spin readout is performed at the location 
indicated by the pink star. b, ESR spectrum of the electron bound to the 2P 
cluster, acquired while the system was tuned within the blue dashed rectangle 
in a. The hyperfine couplings A1, A2 are extracted from ESR frequencies as 

shown, namely A ν ν ν ν= ( + )/2 − ( + )/21 e| e| e| e| ; A ν ν= −2 e| e| .  
c, d, Extracted hyperfine couplings within the marked area. The data show that 
A1 decreases and A2 increases upon moving the operation point towards higher 
gate voltages and away from the donor readout position. e, A small change is 
also observed in the sum of the two hyperfine interactions At = A1 + A2.  
f, Electrical modulation (Stark shift) of the electron gyromagnetic ratio γe, 
extracted from the shift of the average of the hyperfine-split electron 
resonances. The ESR frequencies can be tuned with fast donor gates at the rate 
of ν∆ =0.3MHzVe|

−1; ν∆ = 5.2MHzVe|
−1; ν∆ = 7.6MHzVe|

−1; ν∆ = 2.4MHzVe|
−1.
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Article

a

b

c

d

Extended Data Fig. 3 | Coherence metrics of the electron spin qubit.  
The columns correspond to the nuclear configurations | !, | !, | !, | !, 
respectively. All measurements start with the electron spin initialized in the |↓" 
state. Error bars are 1σ confidence intervals. a, Electron Rabi oscillations. The 
measurements were performed by applying a resonant ESR pulse of increasing 
duration. The different Rabi frequencies fRabi on each resonance are probably due 
to a frequency-dependent response of the on-chip antenna and the cable 
connected to it. b, Electron spin-lattice relaxation times T1e. Measurements were 
obtained by first adiabatically inverting the electron spin to |↑", followed by a 
varying wait time τ before electron readout. The observed relaxation times are 
nearly three orders of magnitude shorter than typically observed in 
single-electron, single-donor devices66, and even shorter compared to 1e–2P 
clusters. This strongly suggests that the measured electron is the third one, on 
top of two more tightly-bound electrons which form a singlet spin state67. We also 

observe a strong dependence of T1e on nuclear spin configuration. c, Electron 
dephasing times T 2e

! . The measurements were conducted by performing a 
Ramsey experiment—that is, by applying two π/2 pulses separated by a varying 
wait time τ, followed by electron readout. The Ramsey fringes are fitted to a 
function of the form P τ C C ωτ φ τ T( ) = + cos(∆ +∆ )exp[ − ( / ) ]↑ 0 1

2
e2
$ , where ∆ω is  

the frequency detuning and ∆φ is a phase offset. The observed T 2e
%  times are 

comparable to previous values for electrons coupled to a single 31P nucleus.  
d, Electron Hahn-echo coherence times T 2e

H , obtained by adding a π refocusing 
pulse to the Ramsey sequence. We also varied the phase of the final π/2 pulse at a 
rate of one period per τ = (5 kHz)−1, to introduce oscillations in the spin-up 
fraction which help improve the fitting. The curves are fitted to the same 
function used to fit the Ramsey fringes, with fixed ∆ω = 5 kHz. The measured T 2e

H  
times are similar to previous observations for electrons coupled to a single 31P 
nucleus.

Rabi

Init in , vary | ↑ ⟩ τ

Ramsey

Hahn Echo
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a

b

c

Extended Data Fig. 4 | Nuclear spin coherence times. Panels in column 1 (2) 
correspond to nucleus Q1 (Q2). Error bars are 1σ confidence intervals.  
a, Nuclear dephasing times T 2n

! , obtained from a Ramsey experiment. Results 
are fitted with a decaying sinusoid with fixed exponent factor 2 (see Extended 
Data Fig. 3). b, Nuclear Hahn-echo coherence times T 2n

H . To improve fitting, 
oscillations are induced by incrementing the phase of the final π/2 pulse with  
τ at a rate of one period per (3.5 kHz)−1. Results are fitted with a decaying 
sinusoid with fixed exponent factor 2 (see Extended Data Fig. 3). c, Dependence 
of T 2n

H  on the amplitude of an off-resonance pulse. We perform this experiment 

to study whether a qubit, nominally left idle (or, in quantum information terms, 
subjected to an identity gate) is affected by the application of an RF pulse to the 
other qubit, at a vastly different frequency. Here, during the idle times between 
NMR pulses, an RF pulse is applied at a fixed frequency 20 MHz—far off 
resonance from both qubits’ transitions—with varying amplitude VRF. The red 
dashed line indicates the applied RF amplitude for NMR pulses throughout the 
experiment. We observe a slow decrease of T 2n

H  with increasing VRF. This is 
qualitatively consistent with the observation of large stochastic errors on the 
idle qubit, as extracted by the GST analysis in Fig. 3.

Check if  left (idle) is affected 
by pulse on other qubit

Ramsey

Hahn Echo
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1e- 2n Quantum Processor
• Single qubit ops. by NMR ✅ 

• Two qubit ops.: exploit hyperfine e.g. CZ 

‣ 2π pulse on electron to acquire phase -1 

‣  
and apply X2π at  , 
| ⇓ ⟩ ⊗ ( | ⇓ ⟩ + | ⇑ ⟩)/ 2 ≡ ( | ⇓ ⇓ ⟩ + | ⇓ ⇑ ⟩)/ 2

νe|⇓⇓

( − | ⇓ ⇓ ⟩ + | ⇓ ⇑ ⟩)/ 2 ≡ | ⇓ ⟩ ⊗ ( − | ⇓ ⟩ + | ⇑ ⟩)/ 2

Nature | Vol 601 | 20 January 2022 | 349

electron spin readout20, and high fidelity (approximately 99.9%) 
single-shot quantum nondemolition readout of the nuclear spins21, as 
well as nuclear magnetic resonance (NMR) and electron spin resonance 
(ESR)22 on all spins involved (see Methods).

The ESR spectra in Fig. 1c exhibit four resonances. This means that 
the ESR frequency depends upon the state of two nuclei, to which the 
electron is coupled by contact hyperfine interactions A1 ≈ 95 MHz 
and A2 ≈ 9 MHz, with a dependence on the gate potentials caused by 
the Stark shift (Extended Data Fig. 2). We adopt labels where, for 
instance, νe|  represents the frequency at which the electron spin 
undergoes transitions conditional on the two nuclear spin qubits 
being in the |Q Q $ = | $1 2  state, and so on. The values of A1, A2 can be 
independently checked by measuring the frequencies νQ1|↓, νQ2|↓ at 
which each nucleus responds while the electron is in the |↓$ state 
(Supplementary Information section 1).The hyperfine-coupled elec-
tron could either be the first or the third electron bound to the donor 
cluster. Since its spin relaxation time T1e is three orders of magnitude 
shorter than expected from a one-electron system (Extended Data 
Fig. 3), we interpret the ESR spectrum in Fig. 1c as describing the 
response of the third electron bound to a 2P donor system.

An effective-mass calculation of the wavefunction of the third elec-
tron in a 2P system (see Methods) reproduces the observed values 
of A1 and A2 by assuming donors spaced 6.5 nm apart, and subjected 
to an electric field 2 mV nm−1 that pulls the electron wavefunction 
more strongly towards donor 1 (Fig. 1b). The 31P nuclei in this 2P 
cluster are spaced more widely than those produced by scanning 
probe lithography8,23, where the sub-nanometre inter-donor spacing 
causes a strongly anisotropic hyperfine coupling, which randomizes 
the nuclear spin state each time the electron is removed from the 
cluster for spin readout24. Here, instead, the probability of flipping 
a nuclear spin by electron ionization is of order 10−6 (Extended Data 
Fig. 5), meaning that our nuclear readout is almost perfectly quantum 
nondemolition.

Nuclear two-qubit operations
We first consider the two 31P nuclear spins as the qubits of interest. 
One-qubit logic operations are trivially achieved by NMR pulses21 
(Methods and Extended Data Fig. 4), where A1 ≠ A2 provides the spectral 
selectivity to address each qubit individually (Fig. 1c). Two-qubit opera-
tions are less trivial, since the nuclei are not directly coupled to each 
other (Supplementary Information sections 1, 9). They are, however, 
hyperfine-coupled to the same electron. This allows the implementa-
tion of a geometric two-qubit controlled-Z (CZ) gate4,16.

When a quantum two-level system is made to trace a closed trajectory 
on its Bloch sphere, its quantum state acquires a geometric phase  
equal to half the solid angle enclosed by the trajectory25. Figure 1d illus-
trates how an electron 2π pulse at the frequency νe|  (see Fig. 1d)  
constitutes a nuclear CZ two-qubit gate. Starting from the state 
| $ ⊗ (| $ + | $)/ 2 ≡ (| $ + | $)/ 2 , the electron X2π pulse at νe|  
introduces a phase factor eiπ = −1 to the | $ branch of the superposi-
tion, resulting in the state ( − | $ + | $)/ 2 ≡ | $ ⊗ ( − | $ + | $)/ 2 , 
that is, a rotation of Q2 by 180 degrees around the z axis of its Bloch 
sphere, which is the output of a CZ operation. Conversely, if the initial 
state of Q1 were | $, the pulse at νe|  would have no effect on the elec-
tron, leaving the nuclear qubits unaffected.

A nuclear controlled-NOT (CNOT) gate is obtained by sandwiching 
the CZ gate between a nuclear −π/2 and π/2 pulse (Extended Data 
Fig. 6a). Applying an ESR X2π pulse at νe|  transforms the sequence into 
a zero-CNOT gate, that is, a gate that flips Q2 when Q1 is in the |0$ ≡ | $ 
state (Extended Data Fig. 6b and Supplementary Information section 2).

We apply this universal gate set (Fig. 2a) to produce each of the  
four maximally entangled Bell states of the two nuclear spins, 
Φ| $ = (| $ ± | $)/ 2±  and Ψ| $ = (| $ ± | $)/ 2± . We reconstruct the 
full density matrices of the Bell states using maximum likelihood quan-
tum state tomography26 (Supplementary Information section 3).  
The reconstructed states (Fig. 2f) have fidelities of up to 94.2(2.7)%, 
and concurrences as high as 0.93(4), proving the creation of genuine 
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Fig. 1 | Operation of a one-electron–two-nuclei quantum processor.  
a, Artist’s impression of a pair of 31P nuclei (red), asymmetrically coupled to the 
same electron (blue). The spins are controlled by oscillating magnetic fields 
(yellow) generated on-chip. b, Effective-mass calculation of the wavefunction 
ψ( y, z) of the third electron on the 2P cluster. The observed values of hyperfine 
coupling are well reproduced by assuming a 6.5-nm spacing between the 
donors. c, Experimental NMR spectrum of the 31P nuclei (top) and ESR spectrum 
of the shared electron (bottom) at B0 = 1.33 T, along with energy level diagram 

(right) of the eight-dimensional Hilbert space (spacings not to scale).  
The spectra yield the hyperfine couplings A1 ≈ 95 MHz and A2 ≈ 9 MHz  
between the electron and the nuclear qubits Q1 and Q2. d, Implementation  
of a geometric two-qubit CZ gate. A conditional π phase shift is acquired when a 
2π rotation is applied on the electron spin at frequency νe| , that is, conditional 
on the nuclear spins being | !. This operation corresponds to the CZ gate on 
the nuclei when restricted to the electron |↓" subspace, as indicated by the 
equivalence symbol (≅) between the two circuits.
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Figure S2. Experimental CNOT truth-tables. The qubits, encoded on the nuclear spins, have been prepared in all four
eigenstates, with the electron spin in the |¿Í state. We adopt a notation for the computational basis consistent with the standard
quantum information conventions, where |»Í © |1Í and |«Í © |0Í. a, CNOT quantum logic gate, where Q1 serves as a control
and Q2 as a target. b, CNOT quantum logic gate, where Q1 serves as a target and Q2 as a control. c, Zero-CNOT (zCNOT)
quantum logic gate, where Q1 serves as a control and Q2 as a target. Here, by selecting a di�erent ESR transition for the
electron 2fi-pulse and exchanging the single-qubit gates, the target qubit is inverted when the control qubit is in the |0Í state.
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electron 2fi-pulse and exchanging the single-qubit gates, the target qubit is inverted when the control qubit is in the |0Í state.
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3

S2. CNOT TRUTH TABLES

Y⇡/2
Y-⇡/2

X2⇡

|**i

1

|*+i

1

|+*i

1

|++i

1

|**i

1

|*+i

1

|+*i

1

|++i

1

a

|**i

1

|*+i

1

|+*i

1

|++i

1

|**i

1

|*+i

1

|+*i

1

|++i

1

b

|**i

1

|*+i

1

|+*i

1

|++i

1

|**i

1

|*+i

1

|+*i

1

|++i

1

c

Y-⇡/2
Y⇡/2

X2⇡

Y-⇡/2
Y⇡/2

X2⇡

|Q1i

1
|Q2i

1
|#i

1

|#i

1

|#i

1

|Q1i

1
|Q2i

1

|Q1i

1
|Q2i

1
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two-qubit entanglement. Here and elsewhere, error bars indicate 1σ 
confidence intervals. Bell fidelities and concurrences are calculated 
without removing state preparation and measurement (SPAM) errors 
(Extended Data Table 1).

Gate set tomography
We used a customized, efficient GST5,27,28 analysis (see Methods, 
Extended Data Figs. 7–9 and Supplementary Information sections 4, 5, 8)  
to investigate the quality of six logic operations on two nuclear-spin 
qubits: Xπ/2 and Yπ/2 rotations on Q1 and Q2, an additional Y−π/2 rotation 
on Q2, and the entangling CZ gate. No two single-qubit operations are 
ever performed in parallel. GST probes these six logic operations and 
reconstructs a full two-qubit model for their behaviour. Earlier experi-
ments on electron spins in silicon used randomized benchmarking29,30 
to extract a single number for the average fidelity of all logic operations. 

Characterizing specific gates required ‘interleaved’ randomized bench-
marking, which can suffer systematic errors31,32. Most importantly, 
randomized benchmarking does not reveal the cause or nature of the 
errors. Our GST method enables measuring each gate’s fidelity to high 
precision, distinguishing the contributions of stochastic and coherent 
errors, and separating local errors (on the target qubit) from crosstalk 
errors (on, or coupling to, the undriven spectator qubit).

GST estimates a two-qubit process matrix for each logic operation 
(Gi: i = 1, …, 6) using maximum likelihood estimation. We represent each 
Gi as the composition of its ideal target unitary process ( iG ) with an error 
process written in terms of a Lindbladian generator ( iL ): G = ei i

iGL . The 
error generator of each gate can be written as a linear combination of 
independent elementary error generators that describe distinct types 
of error33. Each elementary error generator’s coefficient in iL  is the rate 
(per gate) at which that error builds up. Any Markovian error process 
can be described using just four kinds of elementary error generators: 
Hamiltonian (H) errors, indexed by a single two-qubit Pauli operator, 
cause coherent or unitary errors (for example, HZZ generates a coherent 
ZZ rotation); Pauli stochastic (S) errors, also indexed by a single Pauli 
operator, cause probabilistic Pauli errors (for example, SIX causes prob-
abilistic X errors on Q2); Pauli correlation (C) errors; and active (A) errors, 
indexed by two Pauli operators, describe more exotic errors (see Meth-
ods) that were not detected in this experiment. We found that the behav-
iour of each gate could be described using just 13–14 elementary error 
generators: three local S errors and three local H errors acting on each 
of Q1 and Q2, and 1–2 entangling H errors (discussed in detail below). 
Extended Data Fig. 8 shows the rates of those errors, along with the pro-
cess matrices and full error generators used to derive them. To get a 
higher-level picture of gate quality, we aggregate the rates of related 
errors (see Methods) to report total rates of stochastic and coherent 
errors on each qubit and on the entire two-qubit system. We present two 
overall figures of merit in Fig. 3a, c: generator infidelity and total error. 
Generator infidelity is closely related to entanglement infidelity, which 
accurately predicts average gate performance in realistic large-scale 
quantum processors and can be compared to fault-tolerance thresholds 
(see Methods and Supplementary Information section 9). Total error is 
related to diamond norm (see Supplementary Information section 9) 
and estimates worst-case gate performance in any circuit, including 
structured or periodic circuits. In Fig. 3c, we additionally report the 
average gate fidelity of each gate on its target to ease comparison of 
these results with those from the literature.

The process matrices estimated by GST are not unique. An equivalent 
representation of the gate set can be constructed by a gauge transfor-
mation5,34 in which all process matrices are conjugated by some invert-
ible matrix, Gi → MGiM−1. Some gate errors, such as over/under-rotations 
or errors on idle spectator qubits, are nearly unaffected by choice of 
gauge; they are intrinsic to that gate. But other errors, such as a tilted 
rotation axis, can be shifted from one gate to another by changing 
gauge. These relational errors cannot be objectively associated with 
any particular gate. Recognizing this, we divide coherent errors into 
intrinsic and relational components (Fig. 3a, c). Intrinsic errors perturb 
the eigenvalues of a gate, whereas relational errors perturb its eigenvec-
tors. In Fig. 3a, c we follow standard GST practice by choosing a gauge 
that makes the gates as close to their targets as possible. This associates 
relational errors with individual gates, in a way that depends critically 
on the choice of gauge. But the magnitude of a given relational error 
between a set of gates is gauge invariant, and Fig. 3d illustrates the 
total relational error between each pair of gates. In this work, we found 
evidence only for pairwise relational errors, although more complex 
multi-gate relational errors are possible.

All six gates achieved on-target fidelities greater than 99%, with 
infidelities as low as 0.07(3)% on Q1 and 0.68(7)% on Q2. However, we 
observed substantial crosstalk on the spectator qubit during one-qubit 
gates, resulting in full logic operations (one-qubit gate and spectator 
idle operation in parallel) with higher infidelities of 0.68(6)%−3.5(2)%. 
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two-qubit entanglement. Here and elsewhere, error bars indicate 1σ 
confidence intervals. Bell fidelities and concurrences are calculated 
without removing state preparation and measurement (SPAM) errors 
(Extended Data Table 1).

Gate set tomography
We used a customized, efficient GST5,27,28 analysis (see Methods, 
Extended Data Figs. 7–9 and Supplementary Information sections 4, 5, 8)  
to investigate the quality of six logic operations on two nuclear-spin 
qubits: Xπ/2 and Yπ/2 rotations on Q1 and Q2, an additional Y−π/2 rotation 
on Q2, and the entangling CZ gate. No two single-qubit operations are 
ever performed in parallel. GST probes these six logic operations and 
reconstructs a full two-qubit model for their behaviour. Earlier experi-
ments on electron spins in silicon used randomized benchmarking29,30 
to extract a single number for the average fidelity of all logic operations. 

Characterizing specific gates required ‘interleaved’ randomized bench-
marking, which can suffer systematic errors31,32. Most importantly, 
randomized benchmarking does not reveal the cause or nature of the 
errors. Our GST method enables measuring each gate’s fidelity to high 
precision, distinguishing the contributions of stochastic and coherent 
errors, and separating local errors (on the target qubit) from crosstalk 
errors (on, or coupling to, the undriven spectator qubit).

GST estimates a two-qubit process matrix for each logic operation 
(Gi: i = 1, …, 6) using maximum likelihood estimation. We represent each 
Gi as the composition of its ideal target unitary process ( iG ) with an error 
process written in terms of a Lindbladian generator ( iL ): G = ei i

iGL . The 
error generator of each gate can be written as a linear combination of 
independent elementary error generators that describe distinct types 
of error33. Each elementary error generator’s coefficient in iL  is the rate 
(per gate) at which that error builds up. Any Markovian error process 
can be described using just four kinds of elementary error generators: 
Hamiltonian (H) errors, indexed by a single two-qubit Pauli operator, 
cause coherent or unitary errors (for example, HZZ generates a coherent 
ZZ rotation); Pauli stochastic (S) errors, also indexed by a single Pauli 
operator, cause probabilistic Pauli errors (for example, SIX causes prob-
abilistic X errors on Q2); Pauli correlation (C) errors; and active (A) errors, 
indexed by two Pauli operators, describe more exotic errors (see Meth-
ods) that were not detected in this experiment. We found that the behav-
iour of each gate could be described using just 13–14 elementary error 
generators: three local S errors and three local H errors acting on each 
of Q1 and Q2, and 1–2 entangling H errors (discussed in detail below). 
Extended Data Fig. 8 shows the rates of those errors, along with the pro-
cess matrices and full error generators used to derive them. To get a 
higher-level picture of gate quality, we aggregate the rates of related 
errors (see Methods) to report total rates of stochastic and coherent 
errors on each qubit and on the entire two-qubit system. We present two 
overall figures of merit in Fig. 3a, c: generator infidelity and total error. 
Generator infidelity is closely related to entanglement infidelity, which 
accurately predicts average gate performance in realistic large-scale 
quantum processors and can be compared to fault-tolerance thresholds 
(see Methods and Supplementary Information section 9). Total error is 
related to diamond norm (see Supplementary Information section 9) 
and estimates worst-case gate performance in any circuit, including 
structured or periodic circuits. In Fig. 3c, we additionally report the 
average gate fidelity of each gate on its target to ease comparison of 
these results with those from the literature.

The process matrices estimated by GST are not unique. An equivalent 
representation of the gate set can be constructed by a gauge transfor-
mation5,34 in which all process matrices are conjugated by some invert-
ible matrix, Gi → MGiM−1. Some gate errors, such as over/under-rotations 
or errors on idle spectator qubits, are nearly unaffected by choice of 
gauge; they are intrinsic to that gate. But other errors, such as a tilted 
rotation axis, can be shifted from one gate to another by changing 
gauge. These relational errors cannot be objectively associated with 
any particular gate. Recognizing this, we divide coherent errors into 
intrinsic and relational components (Fig. 3a, c). Intrinsic errors perturb 
the eigenvalues of a gate, whereas relational errors perturb its eigenvec-
tors. In Fig. 3a, c we follow standard GST practice by choosing a gauge 
that makes the gates as close to their targets as possible. This associates 
relational errors with individual gates, in a way that depends critically 
on the choice of gauge. But the magnitude of a given relational error 
between a set of gates is gauge invariant, and Fig. 3d illustrates the 
total relational error between each pair of gates. In this work, we found 
evidence only for pairwise relational errors, although more complex 
multi-gate relational errors are possible.

All six gates achieved on-target fidelities greater than 99%, with 
infidelities as low as 0.07(3)% on Q1 and 0.68(7)% on Q2. However, we 
observed substantial crosstalk on the spectator qubit during one-qubit 
gates, resulting in full logic operations (one-qubit gate and spectator 
idle operation in parallel) with higher infidelities of 0.68(6)%−3.5(2)%. 
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two-qubit entanglement. Here and elsewhere, error bars indicate 1σ 
confidence intervals. Bell fidelities and concurrences are calculated 
without removing state preparation and measurement (SPAM) errors 
(Extended Data Table 1).

Gate set tomography
We used a customized, efficient GST5,27,28 analysis (see Methods, 
Extended Data Figs. 7–9 and Supplementary Information sections 4, 5, 8)  
to investigate the quality of six logic operations on two nuclear-spin 
qubits: Xπ/2 and Yπ/2 rotations on Q1 and Q2, an additional Y−π/2 rotation 
on Q2, and the entangling CZ gate. No two single-qubit operations are 
ever performed in parallel. GST probes these six logic operations and 
reconstructs a full two-qubit model for their behaviour. Earlier experi-
ments on electron spins in silicon used randomized benchmarking29,30 
to extract a single number for the average fidelity of all logic operations. 

Characterizing specific gates required ‘interleaved’ randomized bench-
marking, which can suffer systematic errors31,32. Most importantly, 
randomized benchmarking does not reveal the cause or nature of the 
errors. Our GST method enables measuring each gate’s fidelity to high 
precision, distinguishing the contributions of stochastic and coherent 
errors, and separating local errors (on the target qubit) from crosstalk 
errors (on, or coupling to, the undriven spectator qubit).

GST estimates a two-qubit process matrix for each logic operation 
(Gi: i = 1, …, 6) using maximum likelihood estimation. We represent each 
Gi as the composition of its ideal target unitary process ( iG ) with an error 
process written in terms of a Lindbladian generator ( iL ): G = ei i

iGL . The 
error generator of each gate can be written as a linear combination of 
independent elementary error generators that describe distinct types 
of error33. Each elementary error generator’s coefficient in iL  is the rate 
(per gate) at which that error builds up. Any Markovian error process 
can be described using just four kinds of elementary error generators: 
Hamiltonian (H) errors, indexed by a single two-qubit Pauli operator, 
cause coherent or unitary errors (for example, HZZ generates a coherent 
ZZ rotation); Pauli stochastic (S) errors, also indexed by a single Pauli 
operator, cause probabilistic Pauli errors (for example, SIX causes prob-
abilistic X errors on Q2); Pauli correlation (C) errors; and active (A) errors, 
indexed by two Pauli operators, describe more exotic errors (see Meth-
ods) that were not detected in this experiment. We found that the behav-
iour of each gate could be described using just 13–14 elementary error 
generators: three local S errors and three local H errors acting on each 
of Q1 and Q2, and 1–2 entangling H errors (discussed in detail below). 
Extended Data Fig. 8 shows the rates of those errors, along with the pro-
cess matrices and full error generators used to derive them. To get a 
higher-level picture of gate quality, we aggregate the rates of related 
errors (see Methods) to report total rates of stochastic and coherent 
errors on each qubit and on the entire two-qubit system. We present two 
overall figures of merit in Fig. 3a, c: generator infidelity and total error. 
Generator infidelity is closely related to entanglement infidelity, which 
accurately predicts average gate performance in realistic large-scale 
quantum processors and can be compared to fault-tolerance thresholds 
(see Methods and Supplementary Information section 9). Total error is 
related to diamond norm (see Supplementary Information section 9) 
and estimates worst-case gate performance in any circuit, including 
structured or periodic circuits. In Fig. 3c, we additionally report the 
average gate fidelity of each gate on its target to ease comparison of 
these results with those from the literature.

The process matrices estimated by GST are not unique. An equivalent 
representation of the gate set can be constructed by a gauge transfor-
mation5,34 in which all process matrices are conjugated by some invert-
ible matrix, Gi → MGiM−1. Some gate errors, such as over/under-rotations 
or errors on idle spectator qubits, are nearly unaffected by choice of 
gauge; they are intrinsic to that gate. But other errors, such as a tilted 
rotation axis, can be shifted from one gate to another by changing 
gauge. These relational errors cannot be objectively associated with 
any particular gate. Recognizing this, we divide coherent errors into 
intrinsic and relational components (Fig. 3a, c). Intrinsic errors perturb 
the eigenvalues of a gate, whereas relational errors perturb its eigenvec-
tors. In Fig. 3a, c we follow standard GST practice by choosing a gauge 
that makes the gates as close to their targets as possible. This associates 
relational errors with individual gates, in a way that depends critically 
on the choice of gauge. But the magnitude of a given relational error 
between a set of gates is gauge invariant, and Fig. 3d illustrates the 
total relational error between each pair of gates. In this work, we found 
evidence only for pairwise relational errors, although more complex 
multi-gate relational errors are possible.

All six gates achieved on-target fidelities greater than 99%, with 
infidelities as low as 0.07(3)% on Q1 and 0.68(7)% on Q2. However, we 
observed substantial crosstalk on the spectator qubit during one-qubit 
gates, resulting in full logic operations (one-qubit gate and spectator 
idle operation in parallel) with higher infidelities of 0.68(6)%−3.5(2)%. 
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Remarkably, the infidelity of the CZ gate of 0.79(14)% is almost on par with 
the single-qubit gates—a rare scenario in multi-qubit systems (Fig. 3a, c).

SPAM errors were estimated by GST as 1.05(4)% on average, and as 
low as 0.25(3)% for the | ! state (Extended Data Table 1). This is a 
unique feature of nuclear spin qubits, afforded by the quantum non-
demolition nature of the measurement process21 (Methods and 
Extended Data Fig. 5).

GST provided unambiguous evidence for a surprising relational 
error: weight-2 (entangling) HZZ and/or H ZZ[ ]iG  coherent errors on each 
one-qubit gate Gi, with amplitudes from 1.8–5.0% (Extended Data Fig. 8). 
These errors are consistent with an intermittent ZZ Hamiltonian during 
the gate pulses. After ruling out a wide range of possible error channels, 
we propose that the observed HZZ error arises from the spurious accu-
mulation of geometric phase by the electron spin, caused by 
off-resonance leakage of microwave power near the ESR frequencies 

(Supplementary Information section 9). This observation illustrates 
the diagnostic power of GST, which revealed an error channel we had 
not anticipated. It also shows the ability of GST to unveil correlated 
and entangling errors, the detection and prevention of which is of key 
importance for the realization of fault-tolerant quantum computers35.

Three-qubit entanglement
The nuclear logic gates shown above would not scale beyond a single, 
highly localized cluster of donors. However, adding the hyperfine-coupled 
electron qubit yields a scalable heterogeneous architecture. Electron 
qubits decohere faster (see Extended Data Figs. 3, 4 for a comparison), 
but admit faster control. If high-fidelity entanglement between electron 
and nuclear qubits can be created, electron qubits can enable fast coher-
ent communication between distant nuclei (via electron–electron 
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Fig. 3 | Precise tomographic characterization of one- and two-qubit gate 
quality. Process matrices for all six gates were estimated using gate set 
tomography (GST) and represented as error generators with associated rates. 
a, The total error rate of each gate (columns) can be partitioned into coherent 
(blue) and stochastic (orange) components, then further into components 
acting on Q1 (left), Q2 (right), and on both at once (wide). Coherent errors are 
further partitioned into intrinsic (dark) and relational (light), which were 
assigned to specific gates by fixing a gauge. The generator infidelity of each 
gate (see Supplementary Information section 9) is shown, on the whole 
two-qubit system (hollow pins) and on its target qubit(s) only (black pins). The 
total infidelity of the CZ gate is only 0.79(14)%. Single-qubit gates have 
on-target infidelities of 0.07(3)–0.79(6)%, but display significant crosstalk 
errors of 0.47(5) – 2.63(8)% on the spectator qubit and unexpected entangling 

coherent (ZZ) errors. b, An example process matrix is shown for the CZ gate.  
c, Error metrics for each gate are aggregated by type (stochastic, coherent) and 
support (Q1, Q2, total). Uncertainties in parentheses represent 1σ confidence 
intervals. In addition to generator infidelity, each gate’s average gate fidelity 
on its target qubit(s) is shown, to facilitate comparison with literature.  
d, A gauge-invariant representation of relational errors between gates (for 
example, misalignment of rotation axes) that were assigned to individual gates 
in a, c by fixing a gauge. Each gate is labelled with its intrinsic coherent (H) and 
stochastic (S) errors, and edges between two gates show the total amplitude of 
relational coherent error (misalignment) between them. Large gauge-invariant 
relational errors between single-qubit gates confirm that the entangling 
coherent errors observed in a are not an artefact of gauge-fixing.
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Gate Set Tomography
• Process matrices are not unique 

‣ PMs are conjugated 


‣ some errors unaffected by gauge 
(intrinsic) others are shifted by gauge 
(relational)

Gi → MGiM−1

Fig. 3
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Remarkably, the infidelity of the CZ gate of 0.79(14)% is almost on par with 
the single-qubit gates—a rare scenario in multi-qubit systems (Fig. 3a, c).

SPAM errors were estimated by GST as 1.05(4)% on average, and as 
low as 0.25(3)% for the | ! state (Extended Data Table 1). This is a 
unique feature of nuclear spin qubits, afforded by the quantum non-
demolition nature of the measurement process21 (Methods and 
Extended Data Fig. 5).

GST provided unambiguous evidence for a surprising relational 
error: weight-2 (entangling) HZZ and/or H ZZ[ ]iG  coherent errors on each 
one-qubit gate Gi, with amplitudes from 1.8–5.0% (Extended Data Fig. 8). 
These errors are consistent with an intermittent ZZ Hamiltonian during 
the gate pulses. After ruling out a wide range of possible error channels, 
we propose that the observed HZZ error arises from the spurious accu-
mulation of geometric phase by the electron spin, caused by 
off-resonance leakage of microwave power near the ESR frequencies 

(Supplementary Information section 9). This observation illustrates 
the diagnostic power of GST, which revealed an error channel we had 
not anticipated. It also shows the ability of GST to unveil correlated 
and entangling errors, the detection and prevention of which is of key 
importance for the realization of fault-tolerant quantum computers35.

Three-qubit entanglement
The nuclear logic gates shown above would not scale beyond a single, 
highly localized cluster of donors. However, adding the hyperfine-coupled 
electron qubit yields a scalable heterogeneous architecture. Electron 
qubits decohere faster (see Extended Data Figs. 3, 4 for a comparison), 
but admit faster control. If high-fidelity entanglement between electron 
and nuclear qubits can be created, electron qubits can enable fast coher-
ent communication between distant nuclei (via electron–electron 
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Fig. 3 | Precise tomographic characterization of one- and two-qubit gate 
quality. Process matrices for all six gates were estimated using gate set 
tomography (GST) and represented as error generators with associated rates. 
a, The total error rate of each gate (columns) can be partitioned into coherent 
(blue) and stochastic (orange) components, then further into components 
acting on Q1 (left), Q2 (right), and on both at once (wide). Coherent errors are 
further partitioned into intrinsic (dark) and relational (light), which were 
assigned to specific gates by fixing a gauge. The generator infidelity of each 
gate (see Supplementary Information section 9) is shown, on the whole 
two-qubit system (hollow pins) and on its target qubit(s) only (black pins). The 
total infidelity of the CZ gate is only 0.79(14)%. Single-qubit gates have 
on-target infidelities of 0.07(3)–0.79(6)%, but display significant crosstalk 
errors of 0.47(5) – 2.63(8)% on the spectator qubit and unexpected entangling 

coherent (ZZ) errors. b, An example process matrix is shown for the CZ gate.  
c, Error metrics for each gate are aggregated by type (stochastic, coherent) and 
support (Q1, Q2, total). Uncertainties in parentheses represent 1σ confidence 
intervals. In addition to generator infidelity, each gate’s average gate fidelity 
on its target qubit(s) is shown, to facilitate comparison with literature.  
d, A gauge-invariant representation of relational errors between gates (for 
example, misalignment of rotation axes) that were assigned to individual gates 
in a, c by fixing a gauge. Each gate is labelled with its intrinsic coherent (H) and 
stochastic (S) errors, and edges between two gates show the total amplitude of 
relational coherent error (misalignment) between them. Large gauge-invariant 
relational errors between single-qubit gates confirm that the entangling 
coherent errors observed in a are not an artefact of gauge-fixing.
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Gate Set Tomography

Ext. Dat. Fig. 7

Article

Extended Data Fig. 7 | Two-qubit GST. a, Measurement circuit for the 
two-qubit GST. A modified version of this circuit has been used for Bell state 
tomography. The green box prepares the qubit 2 in the | ! state, then the 
orange box prepares the qubit 1 in the | ! state. The readout step in the blue box 
(see Methods) determines whether the | ! state initialization was successful. 
Only then the record will be saved. The electron spin is prepared in |↓" during 
the nuclear spin readout process. Subsequently, the GST sequence is executed. 
The red box indicates the Q1, Q2 readout step. The total duration of the pulse 
sequence is 120 ms, of which nuclear spin initialization is 8.6 ms (green and 
yellow), initial nuclear spin readout is 26.5 ms (blue), 3 ms delay is added for 

electron initialization (between blue and purple), GST circuit is 10 µs–300 µs 
(purple), and nuclear readout is 80 ms (orange). b, Measurement results for 
individual two-qubit GST circuit. The first 145 circuits estimate the preparation 
and measurement fiducials, and the subsequent circuits are ordered by 
increasing circuit depth. At the end of a circuit, there are three situations for the 
target state populations: 1) the population is entirely in one state, while all 
others are zero; 2) the population is equally spread over two states, while the 
other two are zero; 3) the population is equally spread over all four states. The 
measured state populations for the different circuits therefore congregate 
around the four bands 0, 0.25, 0.5, and 1, as indicated by black dashed lines.

Article

Extended Data Fig. 7 | Two-qubit GST. a, Measurement circuit for the 
two-qubit GST. A modified version of this circuit has been used for Bell state 
tomography. The green box prepares the qubit 2 in the | ! state, then the 
orange box prepares the qubit 1 in the | ! state. The readout step in the blue box 
(see Methods) determines whether the | ! state initialization was successful. 
Only then the record will be saved. The electron spin is prepared in |↓" during 
the nuclear spin readout process. Subsequently, the GST sequence is executed. 
The red box indicates the Q1, Q2 readout step. The total duration of the pulse 
sequence is 120 ms, of which nuclear spin initialization is 8.6 ms (green and 
yellow), initial nuclear spin readout is 26.5 ms (blue), 3 ms delay is added for 

electron initialization (between blue and purple), GST circuit is 10 µs–300 µs 
(purple), and nuclear readout is 80 ms (orange). b, Measurement results for 
individual two-qubit GST circuit. The first 145 circuits estimate the preparation 
and measurement fiducials, and the subsequent circuits are ordered by 
increasing circuit depth. At the end of a circuit, there are three situations for the 
target state populations: 1) the population is entirely in one state, while all 
others are zero; 2) the population is equally spread over two states, while the 
other two are zero; 3) the population is equally spread over all four states. The 
measured state populations for the different circuits therefore congregate 
around the four bands 0, 0.25, 0.5, and 1, as indicated by black dashed lines.

• 2-qubit GST circuit 

‣ Init. Q1, Init. Q2, QND verify, GST seq., QND Readout


• first 145 circuits estimate prep. & meas. fiducials 

• at the end of each circuit, the population is spread 
over 1, 2 or 4 states
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Three-Qubit Entanglement
• Demonstrate max. entangled Greenberger-Horne-

Zeilinger state  

• Problem: GHZ state dephases too quickly as to 
measure it in different bases required for 
tomography 

• Solution: Repeat reversal of GHZ state N=100 
times /w different phase shifts on the axes of the 
reversal pulses 

‣ Amplitude and phase of oscillations yield coherence 
 sufficient together 

with  to determine GHZ fidelity of 92.5%

( | ⇑ ⇑ ↑ ⟩ + | ⇓ ⇓ ↓ ⟩)/ 2

⟨ ⇓ ⇓ ↓ |ρGHZ | ⇑ ⇑ ↑ ⟩ = ρ18
ρ11, ρ88,

Suppl. Fig. 2
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entanglement, or physical shuttling) or serve as high-fidelity ancilla 
qubits for quantum error correction. To demonstrate this capability, we 
produce the maximally entangled three-qubit Greenberger–Horne–
Zeilinger (GHZ) state ⇑⇑ ⇓⇓ψ| != (| ↑!+ | ↓!!)/ 2GHZ  using the pulse 
sequence shown in Fig. 4a. Starting from | ↓", an NMR Yπ/2 pulse at νQ2|↓ 
creates a coherent superposition state of nucleus 2, followed by a nuclear 
zCNOT gate (as in Fig. 2a) to produce a nuclear |Φ+$ state, and an ESR Xπ 
pulse at νe|  to arrive at |ψGHZ$. Since the ESR frequency directly depends 
on the state of both nuclei, the latter pulse constitutes a natural 
three-qubit Toffoli gate, making the creation of three-qubit entangle-
ment particularly simple, as in nitrogen-vacancy centres in diamond36. 
Executing Toffoli gates on electrons in quantum dots37 requires more 
complex protocols, but can be simplified by a combination of exchange 
and microwave pulses38.

Measuring the populations of the eight electron–nuclear states (Sup-
plementary Information section 7) after each step confirms the 
expected evolution from | ↓" to |ψGHZ$ (Fig. 4b). The evolution can 
be undone by applying the sequence in reverse, yielding a return prob-
ability to | ↓" of 89.6(9)%, including SPAM errors. As in the two-qubit 
case, measuring the populations is a useful sanity check but does not 
prove multipartite entanglement, which requires knowing the 
off-diagonal terms of the density matrix ρGHZ = |ψGHZ$&ψGHZ|.

Standard tomography methods require measuring the target state in 
different bases, obtained by rotating the qubits prior to measurement. 
However, the superposition of | ↓" and | ↑" dephases at a rate dom-
inated by the electron dephasing time T ≈ 100µs2e

"  (Extended Data Fig. 3), 
which is only marginally longer than the nuclear spin operation time of 
approximately 10–20 µs. Therefore, the GHZ state will have dephased 
considerably by the time it is projected onto each measurement basis.

We circumvent this problem by adopting a tomography method that 
minimizes the time spent in the GHZ state. An extension of a method 
first introduced for the measurement of electron–nuclear entangle-
ment in spin ensembles39, it is related to the parity scan commonly used 
in trapped ions40 and superconducting circuits41. We repeat the  

reversal of the GHZ state (Fig. 4b) N = 100 times, each time introducing 
phase shifts θ1,2,3 to the rotation axes of the three reversal pulses, with  
θ1 = 3θ2 = 9θ3 = 9N/125. The return probability to | ↓" oscillates with 
N; the amplitude and phase of the oscillations yield the off-diagonal 
matrix element ρ ρ! ↓| | ↑$=GHZ 18⇓⇓ ⇑⇑ .

Since the ideal ρGHZ has nonzero elements only on its four corners, the 
populations ρ11, ρ88 and the coherence ρ18 are sufficient to determine 
the GHZ state fidelity 'GHZ = 92.5(1.0)%. Also here, SPAM errors remain 
included in total infidelity. By comparison, an 88% GHZ state fidelity 
has been reported in a triple quantum dot after removing SPAM errors, 
whereas the uncorrected fidelity is 45.8%37. This highlights the drastic 
effect of SPAM of multi-qubit entanglement, and the robustness of our 
system against such errors. The different coherence and operation 
timescales for electron and nuclei need not be an obstacle for the use 
of such entangled states in scaled-up architectures, because all further 
entangling or shuttling operations between electrons will occur on 
approximately 1-µs time scales.

Outlook
The demonstration of one-qubit, two-qubit and SPAM errors at or below 
the 1% level highlight the potential of nuclear spins in silicon as a cred-
ible platform for fault-tolerant quantum computing. An often-quoted 
example, based on surface code quantum error correction, sets a 
fault-tolerance threshold of 0.56% for the entanglement infidelity of 
one- and two-qubit gates and the SPAM errors6.

Several avenues are available to harness the high-fidelity opera-
tions demonstrated here. Replacing the 31P donors with the higher-spin 
group-V analogues such as 123Sb (I = 7/2) or 209Bi (I = 9/2) would pro-
vide access to a much larger Hilbert space in which to encode quan-
tum information. For example, a cluster of two 123Sb donors contains 
the equivalent of six qubits in the nuclear spins, plus an electron 
qubit. An error-correcting code can be efficiently implemented in 
high-spin nuclei42, where our method would provide a pathway for 
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Fig. 4 | Creation and tomography of an electron–nuclear three-qubit GHZ 
state. a, b,Starting from | ↓", the first three gates generate an entangled 
three-qubit GHZ state. All eight state populations are read out (b) at each 
circuit step (red dashed lines), and estimated without correcting for SPAM 
errors (Supplementary Information section 7). The final three gates R(θi)φ 
reverse the operations of the first three if the rotation angles are θ1 = θ2 = θ3 = 0, 
returning to the initial state in the absence of errors. The two gates that are 
conditional on Q2 are composed of multiple pulses (Supplementary 
Information section 6). c, The coherence between the GHZ components | ↓" 

and | ↑$ is probed by incrementing the phases θi of the reversal pulses. This 
induces oscillations at frequency f = 2π(θ1 + θ2 + θ3) the amplitude and phase of 
which correspond to the purity and phase relation between | ↓" and | ↑".  
Solid lines are the fitted sinusoidal curves. d, Density-matrix extrema of the 
GHZ state. The state populations of the GHZ components | ↓" and | ↑" at 
circuit step 3 (b) provide the diagonal entries, and the oscillation amplitude 
and phase (c) provide the off-diagonal entries. From these values, the fidelity to 
the nearest GHZ state is estimated as 92.5(1.0)%, including SPAM.



MJ Carballido / Quantum Coherence Lab 2022
20

Summary & Outlook
• Demonstrated 1-qubit, 2-qubit and SPAM 

errors at or below 1% 

• Demonstrated max. entangled GHZ-state 

• Replacing P donors with 123Sb(I = 7/2) or    
209Bi(I = 9/2) could provide a larger Hilbert 
space in which to encode Q.I.: (2Sb ~ 6P+1e) 

• Heavier group-V donors also enable el. 
control of nucler spins, combined with e-
nuclear flipflop transition

Suppl. Fig. 2

• Recent experiments on e-spin qubits in Si 
with fidelities >99% suggest the electron 
fidelity will no linger constitute a bottle neck


