Spring Journal Club

Miguel J. Carballido April 11th, 2022

Precision tomograpy of a three-qubit donor quantum processor in silicon

Nuclear spins were among the first physical platforms to be considered for quantum information processing^{1,2}, because of their exceptional quantum coherence³ and atomic-scale footprint. However, their full potential for quantum computing has not yet been realized, owing to the lack of methods with which to link nuclear qubits within a scalable device combined with multi-qubit operations with sufficient fidelity to sustain fault-tolerant quantum computation. Here we demonstrate universal quantum logic operations using a pair of ion-implanted ³¹P donor nuclei in a silicon nanoelectronic device. A nuclear two-qubit controlled-*Z* gate is obtained by imparting a geometric phase to a shared electron spin⁴, and used to prepare entangled Bell states with fidelities up to 94.2(2.7)%. The quantum operations are precisely

Mateusz T. Mądzik^{1,9,12}, Serwan Asaad^{1,10,12}, Akram Youssry^{2,3}, Benjamin Joecker¹, Kenneth M. Rudinger⁴, Erik Nielsen⁴, Kevin C. Young⁵, Timothy J. Proctor⁵, Andrew D. Baczewski⁶, Arne Laucht^{1,2}, Vivien Schmitt^{1,11}, Fay E. Hudson¹, Kohei M. Itoh⁷,

University of Basel

> The quantum operations are precisely characterized using gate set tomography (GST)⁵, yielding one-qubit average gate fidelities up to 99.95(2)%, two-qubit average gate fidelity of 99.37(11)% and two-qubit preparation/measurement fidelities of 98.95(4)%. These three metrics indicate that nuclear spins in silicon are approaching the performance demanded in fault-tolerant quantum processors⁶. We then demonstrate entanglement between the two nuclei and the shared electron by producing a Greenberger–Horne–Zeilinger three-qubit state with 92.5(1.0)% fidelity. Because electron spin qubits in semiconductors can be further coupled to other electrons⁷⁻⁹ or physically shuttled across different locations^{10,11}, these results establish a viable route for scalable quantum information processing using donor nuclear and electron spins.

Alexander M. Jakob⁸, Brett C. Johnson⁸, David N. Jamieson⁸, Andrew S. Dzurak¹, Christopher Ferrie², Robin Blume-Kohout⁴ & Andrea Morello¹

School of El. Engineering and Telecomunications, UNSW Sydney, AUS
 QuTech, Delft University of Technology, NL / 10 Center for Quantum Devices, Niels Bohr Institute Copenhagen, DEN

MJ Carballido / Quantum Coherence Lab 2022

- Nuclear spins (Ns):
 - Long coherence / weak coupling to environment

- Electron spins (Es):
 - Shorter coherence / stronger coupling to environment

- Combine the best of both:
 - Bridge the gap between Ns through shared Es
 - Entangle electron as an ancilla for readout & operations

Outline

- One electron two nuclei quantum processor
 - Device
 - Methods for readout & control of single qubit
 - Control & characterisation of both qubits

• Nuclear two-qubit operations

- Circuit diagrams
- Bell-states
- Gate set tomography
- Three-qubit entanglement
- Outlook

Device

4

- Standard MOS compatible processes:
 - p-type Si <100>, 10-20 Ω cm
 - ▶ 900 nm epilayer of isotopically enriched ²⁸Si
 - ► 730 ppm residual ²⁹Si
 - doped n⁺ / p for ohmics / leak prevention
 - 200 nm SiO₂ with a 20 x 40 µm etch-window (HF) with 8 nm SiO₂
 - 90 x 100 nm area for P⁺ ion implantation (10keV)
 - donor activation RTA 5" @ 1000° C
 - AI metal gates insulated by native Al₂O₃
 - Anneal 15' @400° C to passivate interface traps
 - ► Static B₀ = 1.33 T

University of Basel Single Shot e⁻ - Spin Readout

- Elzerman Protocol [2]
 - QD coupled to QPC
 - $k_BT < \Delta E_Z < E_{ORB}$

- Detector electrostatically & tunnel coupled to electron site
 - Use a SET coupled to source & drain
 - $\label{eq:bound} \bullet \quad B > 1 \ T \ , \quad \ T_e \sim 200 \ mK$

e Lab 2022

n- - Spin Readout

- Setup of 2-qubit system e & n
 - ESR strip line + static B₀-field
 - ³¹P donor island with bound S = 1/2 electron (D⁰)
 - $\gamma_n \sim 17 \text{ MHz/T}, \ \gamma_e \sim 28 \text{ GHz/T}, \text{ A ~ 117 MHz}$
- For $\gamma_e B_0 >> A > 2\gamma_n B_0$:
 - $\bullet \quad |\downarrow \Uparrow \rangle, |\downarrow \Downarrow \rangle, |\uparrow \Downarrow \rangle, |\uparrow \Uparrow \rangle$
 - ionizing system to D⁺ state $-> | \uparrow \rangle, | \downarrow \rangle$
- ESR & NMR Resonances:
 - $\nu_{e1,2} \approx \gamma_e B_0 \pm A/2$ (+/- for **n** up/down)
 - $\nu_{n1,2} \approx \gamma_n B_0 ~\pm~ A/2$ (+/- for **e** up/down)

Spin-up fraction difference, Δf_{\uparrow}

University of Basel

- 2³¹P donor atom nuclei I = 1/2 + 1 electron S 1/2
 - $\mathbf{H} = -\gamma_e B_0 \hat{S}_z \gamma_e B_0 \ (\hat{I}_{1,z} + \hat{I}_{2,z}) + A_1 \ \mathbf{S} \cdot \mathbf{I_1} \ + \ A_2 \ \mathbf{S} \cdot \mathbf{I_2}$
 - ► A₁ = 95 MHz, A₂ = 9 MHz
 - hyperfine coupled e likely the third one (spin relax. time too short to be the firs one)

- Effective mass calculation
 - A_{1,2} reproducible (calc.) assuming **6.5** nm donor-spacing
 - wide spacing -> less anisotropic hyperfine coupling
 - -> less chance of n-spin radomisation during readout (P~10⁻⁶ -> QND)

- NMR of nuclei /wo no 3rd electron (2 in S = 0)
 - ► A₁ = A₂ = 0
 - identical resonance frequencies

- NMR of nuclei /w all electrons present
 - spectator qubit either in $|\uparrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$
 - no significant coupling between nuclei

University of Basel

1e-2n Quantum Processor

• 4 ESR resonances

- Dependence on gate potentials (Stark shift)
- $\Delta \nu_{e|\Uparrow\Uparrow} = 0.3 \text{ MHzV}^{-1}, \ \Delta \nu_{e|\Uparrow\Downarrow} = 5.2 \text{ MHzV}^{-1}, \ \Delta \nu_{e|\Downarrow\Downarrow} = 7.6 \text{ MHzV}^{-1}, \ \Delta \nu_{e|\Downarrow\Downarrow} = 2.4 \text{ MHzV}^{-1}$
- $\bullet \ A_1 = (\nu_{e|\Uparrow\Downarrow} + \nu_{e|\Uparrow\Uparrow})/2 (\nu_{e|\Downarrow\Downarrow} + \nu_{e|\Uparrow\Downarrow})/2$
- $\bullet \ A_2 = \nu_{e|\Uparrow \Uparrow} \nu_{e|\Uparrow \Downarrow}$
- pink star, readout

 Ext. Dat. Fig. 2
 9
 MJ Carballido / Quantum Coherence Lab 2022

 Δ
 ⁻¹ Δ
 ⁻¹ Δ

MJ Carballido / Quantum Coherence Lab 2022

 $1 + \lambda$

 $| \rangle$

Nuclear 2-Qubit Operations

• CNOT: Q1 as control of Q2

of Basel

University

|↓⟩⊗|↑⟩ apply Y_{-π/2}, |↓⟩⊗|↑⟩−|↓⟩
|↓↑⟩−|↓↓⟩ apply X_{2π} at ν_{e|↓↓},
|↓↑⟩+|↓↓⟩|↓⟩⊗|↑⟩+|↓⟩ apply Y_{+π/2}
|↓⟩⊗|↓⟩

Suppl. Fig. 2

Nuclear Bell State Tomography

• Apply universal gate to produce max. entangled Bell states

University of Basel

- $\bullet \quad |\Phi^{\pm}\rangle = (|\Downarrow\Downarrow\rangle \land \pm |\Uparrow\uparrow\rangle)/\sqrt{2}$
- $\bullet \quad | \Psi^{\pm} \rangle = (\mid \Downarrow \Uparrow \rangle \ \pm \ \mid \Uparrow \Downarrow \rangle) / \sqrt{2}$

- Reconstruct density matrices /w max. likelyhood QST
 - Errors in state prep. fidelity calc. /w Monte Carlo bootstrap resampling

Gate Set Tomography

- Randomised benchmarking does not reveal the nature of errors
- GST distinguishes stochastic & coherent errors, and separates local from crosstalk errors
 - GST estimates a process matrix for each logic operation (L_i) : G_i = e^{L_i}G_i (error generator)
 - Behaviour of each gate described by linear combination of 13-14 elementary errors (coeffs. in L_i, rate of error build up per gate)

16

Gate Set Tomography

- Process matrices are not unique
 - ▶ PMs are conjugated $G_i \rightarrow MG_iM^{-1}$
 - some errors unaffected by gauge (intrinsic) others are shifted by gauge (relational)

Gate Set Tomography

- 2-qubit GST circuit
 - Init. Q1, Init. Q2, QND verify, GST seq., QND Readout
- first 145 circuits estimate prep. & meas. fiducials
- at the end of each circuit, the population is spread over 1, 2 or 4 states

1000

GST circuit number

1500 1592

500

Ext. Dat. Fig. 7	18			MJ Carballido / Quantum Coherence Lab 2022
			↓ <i>↓</i>	
			$ \downarrow\rangle$	

0.00

Three-Qubit Entanglement

- Demonstrate max. entangled Greenberger-Horne-Zeilinger state $(| \Uparrow \Uparrow \uparrow \rangle + | \Downarrow \Downarrow \downarrow \rangle)/\sqrt{2}$
- Problem: GHZ state dephases too quickly as to measure it in different bases required for tomography
- Solution: Repeat reversal of GHZ state N=100 times /w different phase shifts on the axes of the reversal pulses
 - Amplitude and phase of oscillations yield coherence $\langle \Downarrow \Downarrow \downarrow \downarrow | \rho_{\text{GHZ}} | \Uparrow \uparrow \uparrow \rangle = \rho_{18}$ sufficient together with ρ_{11} , ρ_{88} , to determine GHZ fidelity of 92.5%

Summary & Outlook

- Demonstrated 1-qubit, 2-qubit and SPAM errors at or below 1%
- Demonstrated max. entangled GHZ-state
- Replacing P donors with ¹²³Sb(I = 7/2) or ²⁰⁹Bi(I = 9/2) could provide a larger Hilbert space in which to encode Q.I.: (2Sb ~ 6P+1e)
- Heavier group-V donors also enable el. control of nucler spins, combined with enuclear flipflop transition

 Recent experiments on e-spin qubits in Si with fidelities >99% suggest the electron fidelity will no linger constitute a bottle neck