Single-shot readout in graphene quantum dots

L. M. Gächter, R. Garreis, C. Tong, M. J. Ruckriegel, B. Kratochwil, F. K. de Vries, A. Kurzmann, K. Watanabe, T. Taniguchi, T. Ihn, K. Ensslin & W. W. Huang

> Journal Club Zumbühl Lab; 1.4.2022 Rafael Eggli

Why Graphene?

- Low nuclear Spin concentration: ${}^{12}C \sim 98.9\%$: s = 0; ${}^{13}C \sim 1,1\%$: s = $\frac{1}{2}$
- Weak SOI: similar strength as in Si
- Strong 2D confinement:
 - Smaller devices (But harder fab...)
 - Stronger coupling to gates etc.

Bilayer Graphene:

- 4 Atoms in unit cell, 2 directly on top of each other
 - Strongly coupled "dimer sites" due to p_z-orbital overlap
- Band Structure evolution:
 - Single Layer Graphene: Dirac cones, linear dispersion
 - Bilayer: Parabolic dispersion near Dirac points
 - Bilayer: "Weak trigonal wrapping"
 - Band Gap opens in external electric field!
 - In general: 2 degenerate valleys!

The Device (Pt. 1)

- Bilayer Graphene encapsulated in two hBN layers
- Graphite Backgate
- Two top gate layers:
 - Split gate for channel formation
 - Finger gates
 - Separated by 20 nm ALD Al₃O₂

Previous Results

H. Overweg *et al. Nano Lett.* **18** (2018) C. Tong *et al. Nano Lett.* **21** (2021) C. Tong *et al.* <u>arXiv:2106.04722v2</u> VTL

SG

SG

Son

, VTR

Valley-Splitting and Valley-g-Factor

Creating an effective Two-Level-System

6 H. Overweg *et al. Nano Lett*. **18** (2018)

Pulsed Transient Current Spectroscopy

- Constant bias: $V_{SD} = 40 uV$
- 2-Level pulse scheme on plunger
- Current observed either during read (R) or unload (U) phase:
 - Resonant tunnelling during R (excited state only at high B)
 - Relaxation during R blocks current, observed in U
- Pulse amplitude lever arm: $\alpha_{att} = 0.21$ $\alpha_{PG} = 0.05$
- Allows conversion of Pulse amplitude to energy

15

10

5

 $t_{\rm L}$ + $t_{\rm W}$ (µs)

0

- Can be done through $I_{|\downarrow\rangle_R}(t_R)$ measurement
- But only gives lower bound!
- Better 4-level pulse scheme

Measuring T₁

• Problem: long τ -> long t_{tot}

- Current decreases as pulse scheme gets longer!
- Limited by background noise on order 0.1 fA (!!) on hours-timescale
- Conservative estimate:
- $T_1 \ge 100 \ \mu s$

• Need better readout!

The Device (Pt. 2)

- Sensor dot next to target QD
- Separated by 150 nm wide depletion gate
- Much wider barrier gates than in device 1
- Charge sensing described in previous work

A. Kurzmann et al. Nano Lett. 19 (2019)

Single-Shot Readout (Pt.1)

• Tune to valley-polarized spin-2LS:

 $B_{\perp} = 2 T$

- No need for in-plane B_{\parallel} (?)
- Elzerman-readout:
- Monitoring voltage across sensor
- 3 different plunger voltage regimes:
 - Single step: both levels above reservoir
 - Multiple blips: Sequential tunnelling to GS
 - Single blip/none: Good for "qubit"-readout

Single-Shot Readout (Pt.2)

- 10'000 single-shot traces:
- Extract tunnel times:
 - Unloading of excited state: *t*_{ES,out}
 - Reloading of ground state: *t*_{GS,in}
- Detector-Voltage histogram shows 2 peaks
- Fits to tunnel times yield:
 - $\tau_{ES,out} = 4,64 ms$
 - $\tau_{GS,in} = 0,66 ms$
- Readout fidelities & state visibility:
 - $F_{ES} = 90,1 \%$

•
$$F_{GS} = 97\%$$
 $V = 87.1\%$

Conclusions

- Excited state lifetime in bilayer graphene
- $T_1 \sim ms$ Comparable to other electron spin qubit systems
- Single-shot readout realized using DC-sensor dot

Outlook:

- Improve readout speed using RF-sensor dot or dispersive sensing
- Readout of DQD system with spin/valley blockade
- Driving the qubit?