

Solids of quantum Hall skyrmions in graphene

H. Zhou¹, H. Polshyn¹, T. Taniguchi², K. Watanabe² and A. F. Young¹*

A. F. Young

February 2020

Taras Patlatiuk 09.04.2021

Motivation

- electron solid with non-collinear spin structure
- elementary excitations of skyrmion solids
- magnon propagation length
- fractional skyrmion solids

- electrostatic tunability
- exposed surface direct magnetic imaging
- high sample quality broad range of electron density
- high Landau levels electron solids (was shown before)
- lowest Landau level skyrmion solids (in this paper)

Device

а

- monolayer graphene
- ultrahigh-quality
- graphite and hBN
- region I top and bottom graphite gates
- region II top graphite and silicon gate
- region III only silicon gate

Electron solid phase

С

UNI BASEL

- a $\frac{1}{-} + V_{\text{bias}}/2$ 5
- $G \propto \sigma_{xx}$ in the region I
- fractional state (FQH)
- anomalous insulators (electron solids)
- FQH monotonic, temperature activated behaviour
- sign reversal in dG/dT

Electron solid phase

UNI BASEL

- $G \propto \sigma_{xx}$ in the region I
- fractional state (FQH)
- anomalous insulators (electron solids)
- FQH monotonic, temperature activated behaviour
- sign reversal in dG/dT
- integer and fractional states are robust to V_{bias}
- anomalous insulators vanish at $V_{bias} \approx 1 \; mV$

Electron solid phase

$$E_Z = g\mu_B B_T$$
$$E_X = \sqrt{\frac{\pi}{2}} \frac{e^2}{\epsilon l_B}$$

 $l_B = (eB_\perp/\hbar)^{-1/2}$

- electron solids proximal to $v = \pm 2$, $v = \pm 1$, v = 0
- only quantitative differences in electrical transport
- originate from quasiparticles with different spin textures
 - near $v = \pm 2$: solidification of bate electrons or holes, ferromagnetic ground state, exchange interaction is weaker than T \rightarrow paramagnetic state
 - near $\nu = 0$: depend on the ground state, non-collinear or paramagnetic
 - near $v = \pm 1$: charge excitations are spin reversals, nature depends on $\kappa = \frac{E_Z}{E_X}$
 - large κ : single branch polarized solid
 - small κ: excitations are skyrmions, long-wave non-colinear spin texture

Magnon transport

 δV_{nl} can be suppressed by:

- absence of compatible neutral modes in region I
- presence of additional magnon decay channels

Magnon transport

solid

- $\delta V_{nl} = 0$ for $eV_{bias} < E_Z$ indicating magnon transport
- no non-local response in the nonmagnetic v = 2 or v = 0
- strong response at v = 1 or $v = \frac{5}{3}$ fully spin-polarized states, QHFM
- compare $0 < \nu < 1$ and $1 < \nu < 2$
- electron solids suppers magnon transport

Magnon transport

r≁ν = 5/3

rightarrow v = 1/2

 $\rightarrow \nu = 1$

0

Fractional skyrmion solid phase

UNI

- predicted in vicinity of FQH states
- low V_{bias} threashold
- lower temperatures additional spin-textured phases

Conclusion

- electron solids that suppress magnon propagation
- fractional solids
- show how to map-out interacting phase diagram