

Real-Time Feedback Control of Charge Sensing for Quantum Dot Qubits

Takashi Nakajima[®],^{1,*} Yohei Kojima[®],² Yoshihiro Uehara[®],³ Akito Noiri[®],¹ Kenta Takeda[®],¹ Takashi Kobayashi[®],¹ and Seigo Tarucha^{1,3,†}

¹Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan ²Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ³Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

PHYSICAL REVIEW APPLIED 15, L031003 (2021)

Journal Club, 23.07.2021

Motivation

- Operating window of charge sensor is smaller in few-electron regime where sensitivity is increased → subtle tuning of sensor required
- Here: Automated real-time tuning of a charge sensor for spin qubit experiments in a Si/Si_{0.7}Ge_{0.3} DQD device
- Compensation of slow disturbances up to 100 kHz using a digital Proportional-integral-differential (PID) controller
- Demonstrations of the feedback loop:
 - -> Charge stability diagrams
 - -> Single-shot spin measurement

The feedback loop

- Demodulated rf-signal v_m sampled at 100 MSa/s
- v_s : desired setpoint

•
$$e(t) = v_s - v_m(t)$$

• PID controller:
$$u(t) = K_p e(t) + K_i \int_0^t e(s) ds + K_d \frac{de(t)}{dt}$$

- Control voltage $u(t \tau)$; delay $\tau \approx 0.5 \ \mu s$
- *u* is combined with dc voltage *V*_S

Characterization of the feedback control

- (a): Keysight M3300A digitizer has I/O latency of $0.5 \ \mu s$
 - Total settling time in u of 2.2 μ s (not optimized to avoid instability)
- (b): Noise power spectral density of v_m : 1/f tail is suppressed by feedback control (up to $\approx 100 \ kHz$)

Charge stability diagrams (feedback loop off)

- Operating window of charge sensor is narrower when operated in few-electron regime for enhanced sensitivity
- Demodulated rf-signal v_m shown in (a) and its derivative in (b)
- Sensor is sensitive only near the Coulomb peaks, mostly blind in Coulomb blockade regime

Charge stability diagrams (feedback loop on)

- Control voltage *u* shown in (d) and its derivative in (e)
- PID control is reset at t=0 in lower left corner of scan
- Red arrows: Jump from one Coulomb peak to another in the charge sensor
- Yellow circles in (f): Points towards which u is controlled to fulfill $v_m = v_s$
- As V_R is increased, signal trace shifts to the left (black->green->brown)

Single-shot spin measurement (I)

- Pulse cycle (a): Emptying->Reloading->Measuring->Parking->Emptying->...
- Dwell times 10 µs (E), 10 µs (R), 445 µs (M), 35 µs (P)
- Outcomes $v_m = v_{11}$ (triplet) and $v_m = v_{02}$ (singlet)
- Histogram in (b): PID control disabled, 100'000 measurements, $t_{int} = 5 \ \mu s$
- v₁₁ and v₀₂ fluctuate due to first-order drift of charge sensor and v₀₂ − v₁₁ fluctuates due to second order drift → broadening of histograms

Single-shot spin measurement (II)

- In principle, one could turn on the PID control continuously and measure *u*, but this has a few drawbacks:
 - → Settling time of $u ~(\approx 2.2 ~\mu s)$ is an order of magnitude longer than shortest single-shot measurement time achievable in similar setup [1]

 \rightarrow Application of control pulses may cause failure of the feedback loop

• Instead, activate PID control only at point **P** to stabilize charge sensor

Single-shot spin measurement (III)

• Activate PID control only at point **P** to stabilize charge sensor:

 \rightarrow Fluctuation of v_{02} over time is successfully suppressed

Single-shot spin measurement (IV)

• Activate PID control only at point **P** to stabilize charge sensor:

→ Noise suppression improves signal-to-noise ratio SNR = $|v_{02} - v_{11}|/\sigma$ (σ^2 : variance of each peak in histogram)

→ SNR is fitted to:
$$\sigma = \sqrt{\sigma_0^2 / [t_{int} + t_0] + \sigma_d^2(t_{acq})}$$

 $(\sigma_0^2: \text{ white-noise broadening})$
 $(\sigma_d^2: \text{ low-frequency noise contribution})$
 $(t_0: \text{ measurement bandwidth})$
 \Rightarrow For acquisition time $t_{acq} = 300 \text{ s}:$
PID off: SNR saturates for longer t_{int} , with $\sigma_d = 0.2 \text{ mV}^2$
PID on: SNR improves, and $\sigma_d = 0.1 \text{ mV}^2$

→ Reduction of σ_d has larger impact on readout fidelity for smaller SNR: <u>Example</u>: $|v_{02}-v_{11}| = 2 \text{ mV}$, $t_{int} = 100 \text{ }\mu\text{s}$; Readout error is 1.9% for $t_{acq} = 300 \text{ s}$, 3.5% for $t_{acq} = 24 h$ with PID off, 0.3% with PID on

- Charge sensor is maintained in sensitive spot by using a feedback loop
- Settling time $\approx 2.2~\mu s$ allows for suppression of noise below $\approx 100~kHz$
- Demonstration of improved charge stability diagram measurements and single-shot spin readout
- Feedback control may be particularly useful for tasks with longer calculation time, larger qubit systems