

Clean ballistic quantum point contact in SrTiO₃

Evgeny Mikheev,^{1,2} Ilan T. Rosen,^{3,2} Marc A. Kastner,^{1,2,4} and David Goldhaber-Gordon^{1,2}

¹Department of Physics, Stanford University, Stanford, CA 94305, USA ²Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA ³Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA ⁴Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Outline

- Why you should care about SrTiO₃
- Device design
- Data, results
- Conclusion/discussion

Strontium Titanate

- Centrosymmetric (has inversion center)
- no DSOI
- piezoelectric effect (all centrosymmetric materials)
- Paraelectric
- Indirect band gap 3.25 eV
- Direct band gap 3.75 eV
- $\epsilon_r \sim 300$ at room temp.
- Insulator-to-metal transition in LaAlO₃/SrTiO₃ interfaces

Low Temp

٠

- Dielectric constant increases as temp drops \rightarrow saturates around 4 K near $\mathcal{E}_r = 10^5$
- Density dependent superconductivity below 450 mK
- Approaches ferroelectric phase transition but remains paraelectric due to quantum fluctuations
 - Jahn-Teller effect manifests at low temp → molecules distort geometrically to remove degenerate ground-state, thus lowering overall energy

Will Anneal for 2DEGs

Basletic, et al., Nature Materials 7, (2008)

Device

Scale bars: c: 100 um | d: 10 um | e: 1 um

Fabrication

- (c) Ebeam, Ar milling, Ti/Au (10/80)
- (d) Ebeam + sputtering of 80 nm SiO2
- (e) ionic liquid (IL) drop (DEME-TFSI)
- Use IL to tune density before cooling below its freezing point (200 C) and doing measurements

Textbook* quantized conduction

- Doubly degenerate subbands
- Some plateaus skipped

32 mK *B = 5 T (!!)

Lever Arm Non-Uniformity

Subband Evolution

- 2-fold degeneracy persists til ~ 7 T
- Fast and slow moving subbands
 - Cross resulting in intermittent 4-fold degeneracies

3D QPC Saddle Potential

- Extend classic 2D model to 3D
- Quadratic in x, y, z with polarity $P_x = -1$, $P_{y,z} = 1$

$$\mathcal{H} = \sum_{u=x,y,z} \left(-\frac{\hbar^2}{2m_u^*} \cdot \frac{\partial^2}{\partial u^2} + P_u \frac{m_u^* \epsilon_u^2 u^2}{2\hbar^2} \right) + E_{\mathrm{Z}} \sigma_z$$

• At B = 0, $\epsilon_u(B = 0) = \frac{\hbar^2}{(m_u^* l_u^2)}$

- At B \neq 0, cyclotron frequency renormalizes x-y plane confinement: $\epsilon_x = \hbar \omega_x / (1 + \omega_c^2 / \omega_y^2)^{1/2}, \epsilon_y = \hbar (\omega_y^2 + \omega_c^2)^{1/2}, \epsilon_z$ unaffected
- Can separate Hamiltonian to y-z subbands discretized as $|n_y, n_z, s\rangle$ + x component which broadens them

Results

V(y)

• Integers $n_{x,y} \ge 0$ and $s = \pm 1/2$ yield subband spectrum:

$$\epsilon_{yz} = \epsilon_y \left(n_y + \frac{1}{2} \right) + \epsilon_z \left(n_z + \frac{1}{2} \right) + E_{\rm Z}(B, s)$$

- Empirically modify
 - $E_Z(B,s) = g\mu_B s(B B_P)$ when $B \ge B_P$, $E_Z(B,s) = 0$ when $B < B_P$
- Slow moving subbands have $|n_y = 0, n_z, s = \pm 1/2$
- Fast subbands have $n_y > 0$, due to renormalization of ϵ_v by cyclotron frequency

Unusual Spin-Splitting

- Modified E_Z results in subband splitting into 'Y' shape \Rightarrow Y: $B_P = 4.9$ T, g = 0.32 \Rightarrow V: $B_P = 0$ T, g = 0.22
- Appears to not be due to subband broadening
- Possible explanation: attractive "negative-U" interaction between e⁻
 - Then: B_P is field when pairing interaction (singlets) balances with E_Z (alignment of spins)
 - Critical field/temp higher than plausible global SC state in 2DEG
 - Pre-formed pairs condensing at low T?
 - Pairing locally enhanced at ferroelastic domain walls?
 - Valence-skipping defects?

Pascal Conductance with $2e^2/h$ Steps?

That's It

- Interesting material and device architecture
- Unconventional quantized conductance
- Strange attractive e-e effects without global superconductivity

Thanks for listening!!

