

Full . Published Online: 13 November 2019 Accepted: October 2019

Quantum dot thermometry at ultra-low temperature in a dilution refrigerator with a ⁴He immersion cell

Review of Scientific Instruments 90, 113901 (2019); https://doi.org/10.1063/1.5127830

⑮ G. Nicolí^{a)}, 🕼 P. Märki, B. A. Bräm, 🕼 M. P. Röösli, S. Hennel, A. Hofmann, C. Reichl, W. Wegscheider, T. Ihn, and K. Ensslin

```
View Affiliations
```

👲 PDF	ABSTRACT	FULL TEXT	FIGURES	TOOLS	SHARE	METRICS
TOPICS Two-dimensional electron	ABSTRAC	т				
gas	 Experiments performed at a temperature of a few millikelvins require effective thermalization schemes, low-pass filtering of the measurement lines, and low-noise electronics. Here, we report on the modifications to a commercial dilution refrigerator with a base temperature of 3.5 mK that enable us to lower the electron temperature to 6.7 mK 					
Temperature metrology Amplifiers						
Quantum dots						
Dilution refrigeratorsSuperfluids						
	measured fro	m the Cou	lomb peak	width of a quantum dot gate-defined in an [Al]G	BaAs	

Mohammad Samani – December 6, 2019

A. The Immersion Cell

At 2.2K ⁴He phase-transitions to super-fluid

No temperature gradient (good)No viscosity (bad)

Silver tail

III. Quantum Dot Thermometry

(b)

GaAs/AlGaAs heterostructure 2DEG depleted to the last dot

Quantum dot thermometry:

i. conduction through the dot in a single level

ii. tunnel coupling broadening $\Gamma \ll k_B T$

iii. small source-drain bias $eV_{sd} < 4k_BT$

=> Small dot, low occupation number

 $\cosh\left[\alpha e(V_{PG}-V_0)/2k_BT\right]$

$$I_{\text{PG}}^{(\text{r})} = I_{\text{PG}}^{(\text{r})} I_{\text{PG}}^{(\text{r})} = I_{\text{PG}}^{(\text{r})}$$

 $T_{\rm o} = (13.0 + 0.1) \, {\rm mK}$

Phys. Rev. Lett. 119, 176807

S1. Standard DC Measurement. T_=13.0mK

ETH In-house IV Converter 8nV/√Hz @ 33Hz input noise

BasPI IV Converter 2nV/√Hz @ 10Hz input noise

🐺 Texas Instruments	Search Q
Products Applications Design resources Qua	ality & Features
TI Home > Semiconductors > Amplifiers > Operational a	• Very-Low Offset Drift: 1 µV/°C maximum
OPA140 🛛 Active	 Very-Low Offset: 120 μV
	Low Input Bias Current: 10 pA maximum
TIMHZ, SINGle Supply, Low Noise, F	• Very-Low 1/f Noise: 250 nV _{PP} , 0.1 Hz to 10 H
In English V Alert me	 Low Noise: 5.1 nV/√Hz
	 Slew Rate: 20 V/µs
OPAx140 High-precisio	Low Supply Current: 2 mA maximum
D)	Input Voltage Range Includes V– supply
💭 View now 📔 Downlo	• Single-Supply Operation: 4.5 V to 36 V
	 Dual-Supply Operation: ±2.25 V to ±18 V
	No Phase Reversal
	 Industry-Standard SOIC Packages
	 VSSOP, TSSOP, and SOT-23 Packages
	All trademarks are the property of their respective owne

S2. Improve filtering. T_=11.2mK (Underwhelming step)

DAC output filter from 4ms to 22ms

It's important to keep V_0 constant

S3. Replace IV Converter. T_=9.49mK

Johnson noise of $1M\Omega$ is $1nV/\!\!\!\sqrt{Hz} @ 10mK$

Thermal stablization

S3. Replace IV Converter. T_=9.49mK

Fast measurements when 1/f is present

Standard deviation vs. Standard error

$$egin{aligned} \sigma &= \sqrt{rac{\sum_{i=1}^n \left(x_i - ar{x}
ight)^2}{n-1}} \ (\sigma_{ar{x}}) &= rac{\sigma}{\sqrt{n}} \end{aligned}$$

