Microwave cavity detected spin blockade in a few electron double quantum dot

A. J. Landig,¹ J. V. Koski,¹ P. Scarlino,¹ C. Reichl,¹ W. Wegscheider,¹ A. Wallraff,¹ K. Ensslin,¹ and T. Ihn¹ ¹Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland

We investigate spin states of few electrons in a double quantum dot by coupling them weakly to a magnetic field resilient NbTiN microwave resonator. We observe a reduced resonator transmission if resonator photons and spin singlet states interact. This response vanishes in a magnetic field once the quantum dot ground state changes from a spin singlet into a spin triplet state. Based on this observation, we map the two-electron singlet-triplet crossover by resonant spectroscopy. By measuring the resonator only, we observe Pauli spin blockade known from transport experiments at finite source-drain bias and detect an unconventional spin blockade triggered by the absorption of resonator photons.

Overview / Motivation

- Study spin states in DQD using NbTiN resonator R (previously used for charge related phenomena / valley physics) early days: direct transport / charge sensing
- Reduced transmission due to singlet- **R** interaction
- No response for triplet R => distinguish
- Mapping singlet triplet crossover by resonant spectroscopy
- Observation of Pauli spin blockade using **R** only
- Unconventional spin blockade (absorption of **R** photons)

Device Layout

• Double quantum dot:

GaAs / AlGaAs heterostructure Au top gates V_L , V_R control charge configuration V_T control interdot tunnelling strength

Charge sensing:

Sensor dot, operated as QPC

Cavity detection:

- Left plunger gate (orange) connected to end of $\lambda/2$ coplanar waveguide resonator
- Resonance $v_r = 8.33$ GHz
- Linewidth $\kappa/2\pi$ = 101 MHz (Q \approx 80)
- NbTiN thin film (15nm) => can use up to 2T in-plane field

Cavity, zoomed out (previous work)

- DQD with 1 gate connected to resonator
- M: Ohmic contacts
- C: top gates
- I: Inductor
- Al_xGa_{1-x}As heterostructure 35nm below surface

T. Frey et al., PRL 108, 046807 (2012)

Device Layout

<u>Resonant / dispersive readout</u>

- Two electron regime, only singlet / triplet relevant
- Singlet charge qubit (1,1) (0,2)
- Measure normalized resonator transmission (A/A_{max})² at resonance (8.33 GHz)

2 Regimes:

- Dispersive: $E_{Qubit} > E_{resonator}$ (2t > hv_r)
- Resonant: $E_{Qubit} < E_{resonator}$ (2t < hv_r)

Singlet charge qubit $E_q = \sqrt{\delta^2 + (2t)^2}$

<u>Resonant / dispersive readout</u>

- Two electron regime, only singlet / triplet relevant
- Singlet charge qubit (1,1) (0,2)
- Measure normalized resonator transmission (A/A_{max})² at resonance (8.33 GHz)

2 Regimes:

- Dispersive: $E_{Qubit} > E_{resonator}$ (2t > hv_r)
- Resonant: $E_{Qubit} < E_{resonator}$ (2t < h v_r)

Coupling of cavity and DQD

- electric dipole interaction cavity E-field and charge qubit
- coupl. strength: $g_c/2\pi = 28$ MHz
- Qubit decoherence: $\gamma_2/2\pi = 357$ MHz

input – output theory model

- \Rightarrow weakly coupled probe (g_c<< γ_2 , κ), no coherent influence
- Distance btw triple points: 510µeV (123 GHz) interdot capacitive + tunnel coupling

Singlet - triplet crossover

- Resonator response $\mathbf{R}(\delta, B_{inplane})$ @ \approx resonance
- $B_{inplane}$: control $T_{,}T_{+}$ split of from T_{0} (Zeeman) => can change ground state $S \rightarrow T_{+}$

Resonator response

- dispersive: single peak
- resonant: double peak, located at δ_{\pm}
- disappearance of peaks at finite B (change of ground state from singlet to triplet)
- No S-T hybridization (spin-orbit / hyperfine) assumed

Why no signal for $(1,1)T_+$?

- (1,1)T₊ symmetric charge configuration
- \Rightarrow no dipole moment

Signal for ground state GS

- GS is a mixture of (1,1)S and (0,2)S
- \Rightarrow not symmetric
- $\Rightarrow \ \text{dipole moment}$

Extraction of amplitudes for further analysis

- Lorentzian line shape fits
- \Rightarrow get amplitudes A₀, A₊, A₋

Singlet - triplet crossover II

 $B_{0,\pm}$ [T]

Interpretation of qubit – cavity coupling (rot. wave approx.)

$$\begin{split} \tilde{H}_{i} &= -\hbar g_{c} \sin(\theta) \left(a \sigma_{+} + a^{\dagger} \sigma_{-} \right) \\ \sigma_{-} &= \left| g \right\rangle \left\langle e \right| \\ \sigma_{+} &= \left| e \right\rangle \left\langle g \right| \\ \end{split} \qquad \begin{array}{c} \text{Qubit: } \left| g \right\rangle \rightarrow \left| e \right\rangle \\ \text{Cavity: } \left| n + 1 \right\rangle \rightarrow \left| n \right\rangle \end{split}$$

photon creation (annihilation) operator a^{\dagger} (a) $a\sigma_{+}|g\rangle = a|e\rangle\langle g|g\rangle = a|e\rangle$

transmission ~ GS occupation probability (Fermi's Golden rule) assume thermal occupation of DQD states

$$p_{|g\rangle}(B_{\delta}) = 1 / \left(1 + e^{\frac{g\mu_{B}B_{\delta}}{k_{B}T}} + e^{\frac{g\mu_{B}(B-B_{\delta})}{k_{B}T}} + e^{\frac{g\mu_{B}(B+B_{\delta})}{k_{B}T}} \right)$$

B-field B_{δ} : $|q\rangle - (1,1)T_+$ intersection field g-factor: g=-0.4 Temperature: $T_a=60$ mK (1.3GHz) tunnel coupl.: t (input-output analysis

Spin blockade (cavity)

- DC current through DQD below detection limit (<1pA)
- Omit hybridization and Zeeman splitting for qualitative discussion (present in simulation)
- $\Gamma_{\rm R}$ >> $\Gamma_{\rm L}$ ($\Gamma_{\rm L} \approx \Gamma_{\rm S}$, the spin flip rate)

Region B:

- 2 electron ground state (not affected by bias)
- ⇒ same response as in zero bias case for B>0.5T (spin blockade: only one peak since)

Region A (square) @ negative bias:

• spin blockade lifted once (0,1) is within bias window:

 $(1,1)T_+ \rightarrow (0,1) \rightarrow (0,2)S \rightarrow (1,1)S + \gamma$

- green star $\mu((1,1)T_+) = \mu_d$
- upper end $\mu((0,2)S) = \mu_S$
- above: (0,1) is ground state & does not interact with resonator

Region C @ negative bias

- should be same as A for symm. lead tunnel rates
- \Rightarrow dominant (1,2) population
- \Rightarrow does not interact with resonator

Spin blockade (transport)

- DC current through DQD below detection limit (<1pA)
- Omit hybridization and Zeeman splitting for qualitative discussion (present in simulation)
- $\Gamma_{\rm R}$ >> $\Gamma_{\rm L}$ ($\Gamma_{\rm L} \approx \Gamma_{\rm S}$, the spin flip rate)

Region C (square):

- standard transport spin blockade
- (1,2) within bias window
- process: $(1,2) \rightarrow (1,1)T_+ \Rightarrow$ blocked

Why still transport (nonzero signal)?

- Some relaxation to (0,2)S possible (spin flip)
- small tunnelling rate to left lead
- comparable spin flip rate
- => system ≈50% in (0,2)S

Spin blockade (unconventional)

- DC current through DQD below detection limit (<1pA)
- Omit hybridization and Zeeman splitting for qualitative discussion (present in simulation)
- $\Gamma_{\rm R}$ >> $\Gamma_{\rm L}$ ($\Gamma_{\rm L} \approx \Gamma_{\rm S}$, the spin flip rate)

Region B (Square):

- unblocked in standard transport
- Here: small regime of spin blockade

How does it work?

- System should be in (0,2)S ground state
- Photon absorption \rightarrow (1,1)S
- Can fill one electron from right lead: (1,2)
- Decay to $(1,1)T_+ =>$ spin blockade
- $\Rightarrow\,$ transport spin blockade triggered by photon absorption

<u>Summary</u>

- Investigation of spin states using a cavity coupled DQD
- Continuous mode operation, no pulsing required
- Observation of singlet triplet crossover (mapping out transition)
- Various spin blockade mechanisms investigated
 - resonator spin blockade
 - normal transport spin blockade
 - unconventional spin blockade triggered by photon absorption

<u>Singlet - triplet crossover II</u>

Since $\kappa \ll \gamma_2, g_c$, the resonator-qubit interaction is treated as a weak perturbation. In this picture, the Fermi Golden rule determines the rate at which a photon in the resonator and qubit interact as

$$\Gamma_{ph-|g\rangle} = \frac{2\pi}{\hbar} |\langle e|\tilde{H}_{i}|g\rangle|^{2} p_{|g\rangle} = \frac{2\pi}{\hbar} g^{2} \sin(\theta)^{2} p_{|g\rangle} \qquad (20)$$

with the electric dipole interaction Hamiltonian H_i from Eq. (7) and the ground state occupation probability $p_{|q\rangle}$.

If the qubit is in the ground state, it can be excited by absorbing a photon from the resonator. We can model this process with a classical rate equation. The resonator can have one or zero photons with probabilities p_1 and p_0 . In addition to resonator-qubit interaction, the number of photons in the resonator decreases at rate κ_{int} by decay in the resonator. In steady state, the rate equation is

$$\dot{p}_1 = \Gamma_{\rm P} p_0 - (\Gamma_{ph-|g\rangle} + \kappa_{\rm int}) p_1 = 0, \qquad (21)$$

where $\Gamma_{\rm P}$ is the rate at which the resonator probe tone feeds photons into the resonator.

With $p_0 = 1 - p_1$, we arrive at

$$p_1 = \frac{\Gamma_{\rm P}}{\Gamma_{ph-|g\rangle} + \Gamma_{\rm P} + \kappa_{\rm ext}}.$$
 (22)

The transmission of a two-port coupled resonator is given as

$$A^{2} \propto \frac{\kappa_{\text{ext}}}{2} p_{1} = \frac{\Gamma_{\text{P}} \kappa_{\text{ext}}/2}{\Gamma_{ph-|g\rangle} + \Gamma_{\text{P}} + \kappa_{\text{int}}},$$
(23)

where κ_{ext} is the rate at which resonator photons couple with the ports. For $\Gamma_{ph-|g\rangle} \ll \kappa_{int}, \Gamma_{\text{P}}$, we finally obtain with Eqns. (20) and (23)

$$A^2 \propto 1 - C^* p_{|g\rangle},\tag{24}$$

where C^* is a constant.

Tunnel coupling extraction

