

Quantum Coherence Lab Zumbühl Group

Gate-Reflectometry Dispersive Readout of a Spin Qubit in Silicon

A. Crippa,^{1,*} R. Ezzouch,¹ A. Aprá,¹ A. Amisse,¹ L. Hutin,² B. Bertrand,² M. Vinet,² M. Urdampilleta,³ T. Meunier,³ M. Sanquer,¹ X. Jehl,¹ R. Maurand,¹ and S. De Franceschi¹
¹Univ. Grenoble Alpes, CEA, INAC-PHELIQS, F-38000 Grenoble, France
²CEA, LETI, Minatec Campus, F-38000 Grenoble, France
³Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, F-38000 Grenoble, France

arXiv:1811.04414v1

- FAM talk -

Florian Froning 11.01.2019

Scalability

Quantum Gates

Measurement

QUANTUM COMPUTING

Initialization

Coherence Times

Motivation

- one of DiVincenzo's criteria: scalable physical system with well defined qubits
- readout for every single qubit has to be provided
 - QPC and SET: placed nearby and need additional gates
 - superconducting resonators (cQED): large footprint
- gate based readout: use what you already have
 - compact and simple
- single shot readout has been achieved in 2018
 - P. Pakkiam et al., PRX 8, 041032 (2018)
 - A. West *et al.*, arXiv:1809.01864v2
 - M. Urdampilleta *et al.*, arXiv:1809.04584 (2018)
- fast readout on μs scale (with low Q, lumped element resonator)
 - D. de Jong *et al.*, arXiv:1812.08609

Gate Reflectometry

• reflection of an electromagnetic wave depends on change of impedance

$$A_{\text{refl}} = A_{\text{in}} \cdot \Gamma = A_{\text{in}} \cdot \frac{Z - Z_0}{Z + Z_0}$$

• match large impedance of quantum device to 50 Ω impedance by using a **tank circuit**

[1] Blog of Bruno Küng, Zürich Instruments, https://www.zhinst.com/blogs/brunok/rf-reflectometry-quantum-dots/

The Setup

- p-type Si transistor (300 mm SOI wafer, CMOS)
- quality factor ~18
- phase response upon impedance change:

$$C_Q = -\alpha^2 \left(\frac{\partial^2 E_{\pm}}{\partial \varepsilon^2}\right)$$
 $\alpha \simeq 0.58 \,\mathrm{eV/V}$

Energy Spectrum

- not in the single hole regime
- determine charge parity from B-field dependence of interdot transition

Energy Spectrum

- singlet-triplet like energy spectrum
- g-factor difference in left and right dot splits the states at positive detuning
- T_{-} and T_{+} do not yield a phase response, because the state is linear in ϵ

Electrical Control - EDSR

- matching condition: photon energy equals Zeeman splitting of spin states
- B parallel to nanowire
- second harmonic: g=1.735

Resolve Single Spin Transitions

Coherent Spin Control

- spin qubit protocol:
 - initialize at point *I*, manipulate in (1,1) region at point *M*
- $\tau_{Burst}~drives~transitions~|\!\Uparrow\!\!\uparrow\rangle \leftrightarrow |\!\Uparrow\!\!\Downarrow\rangle$

•
$$T_1 = 2.7 \pm 0.7 \ \mu s$$

Summary and Outlook

- Qubit **operation** and **readout** with RF signals
- resolve
 - energy spectrum
 - single spin transitions
- coherent control of spin transitions
 - EDSR
 - Rabi oscillations
- study anisotropy of T₁
- improve T_1 by reducing backaction of amplifier

Scalability

Quantum Gates

Measurement

QUANTUM COMPUTING

Initialization

Coherence Times